Video Signals

IMAGE RESTORATION



Indoor — low light
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Sources of Noise

Additive Noise
(read+amplifier noise)

/
B>
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Multiplicative Noise
(shot noise)




The photographic camera

Image formation on the back-plate of a photographic camera
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Pin-hole Camera - the Perspective Projection

Pinhole )
(Optical Center) .-}

image P
plane
.—-'"-.---/K

\ -1"" virtual
image

Ny
A 4

The pinhole imaging model
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Perspective Projection

Image Plane

§ <.
.. Pinhole /

(Optical Center)

Far objects appear smaller than close ones

The distance d from the pinhole O to the plane containing C
is half the distance from O to the plane containing A and B.
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Basic Equations of Perspective Projection

Principal Point Virtual Image Plarie
. il

Principal Point

-

Image Plane (1 X
e x Yy f =17

Z '
=4z Y V :f;
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Pinhole Images

Exposure 4 seconds Exposure 96 minutes
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Why not a real pin-hole camera?

Images of some text obtained with
shrinking pinholes:

o large pinholes give bright but fuzzy
images;

2mm I mm

> pinholes that are too small also give
blurry images because of diffraction

effects.
OPTICA

0.07 mm
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Image Formation using Lenses

e Lenses are used to avoid problems with pinholes.

e |deal Lens: Same projection as pinhole but gathers more light!
[ o]

» | <
Ll Bl

A
\ 4

1 1 1
_|_
i o f

e f isthe focal length of the lens — determines the lens’s ability to refract light
e f different from the effective focal length f’ discussed before!
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e Gaussian Thin Lens Formula:



Common Lens Related Issues - Summary

Compound (Thick) Lens Vignetting

principal planes

__________ 5 ;---------.,pj____________ e T A
/ nodal points

thickness more light from A than B !
Chromatic Abberation Radial and Tangential Distortion
""" ideal __actual
i acﬂ:ual
U image plane
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Lens Glare

e Stray interreflections of light within the optical lens system.

e Happens when very bright sources are present in the scene.
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Vignetting

More light passes through lens L3 for scene point A than scene point B

Results in spatially non-uniform brightness (in the periphery of the image)
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Vignetting

photo by Robert Johnes
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Chromatic Aberration

longitudinal chromatic aberration transverse chromatic aberration
(axial) (lateral)
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Chromatic Aberrations

i
o
longitudinal chromatic aberration transverse chromatic aberration
(axial) (lateral)
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Geometric Lens Distortions

N e I

:
;
;
H "
- . -
. ; .
:
3
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Radial distortion Tangential distortion

Both due to lens imperfection
Rectify with geometric camera calibration

Photo by Helmut Dersch
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Radial Lens Distortions

R TR Ff
i R

No Distortion Barrel Distortion Pincushion Distortion

e Radial distance from Image Center:

_ 3
a rd+k]rd

u
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Real lenses: Radial Distortion

In many cases the lens distortion can be well-modeled as radial. This is the case of
the common pincushion and barrel distortions.

Optical axes
jﬂ intersection ‘?d

(%4, y) = undistorted image point,

Iy

(x4,yq) = distorted image point.,
(e, y.) = centre of distortion,
K, = N'" radial distortion coefficient,
P, =N tangential distortion coetficient
r=/(xqg—xc)* + (ya — ye)?,
Ty =2q + (g — ) (K1r* + Kor* + .. )+
(Pl(-rz + 2(xg — xc)z) + 2Py (xg — ) (yqg — yc)) (1+ Pyr?4..)
Yo =Ya + (Ya — ye) (K1 + Kor* 4+ .. )+

(2P1(xd — xe)(ya — ye) + Pa(r® +2(ya — ve)?)) (1 4+ P3r® +..))
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Correcting Radial Lens Distortions

Before After

Video Signals Marco Marcon



IMAGE DENOISING




Problem Definition

Visual Quality

MSE / PSNR

N\

n Noise?—>'ﬁ,=y—x
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Problem Definition

Visual Quality

MSE / PSNR

Kok

—

Mean Square Error
MSE = ||£ — x||5

Peak Signal-to-Noise ratio
255

= 20log,n——
910 MSE

& y=x+n

PSNR

n Noise?—)’ﬁ,:y—jc\
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Denoising in the Spatial Domain

IH

The “classical” assumption:
Images are piecewise constant

Neighboring pixels are highly correlated

= Denoise = “Average nearby pixels” (filtering)
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Gaussian Smoothing

1 _li=jl?
2 == ) y(De” 2
L
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Toy Example

How can we preserve the fine details?
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Local adaptive smoothing

Non uniform smoothing
Depending on image content:
> Smooth where possible

> Preserve fine details
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Anisotropic Filtering

Edges = smooth only along edges

“Smooth” regions = smooth isotropically

gradient I Perona and Malik (1990) I
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Bilateral Filtering

. iz G
(D) =22 y(De # e

Intensity

o

I Smith and Brady (1997) I
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Space




Gaussian Smoothing

. * n output
1A
.

Same Gaussian kernel everywhere
Averages across edges = blur
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Bilateral Filtering

.*n output
i-l*n
A - K

Kernel shape depends on image content
Avoids averaging across edges
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Denoising in the Transform Domain

Motivation — New representation where signal and noise are more
separated

Denoise = “Suppress noise coefficients while preserving the signal
coefficients”
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Fourier Domain

Noise
White = spread uniformly in Fourier domain

Signal
Spread non-uniformly in the Fourier domain

noise
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Low-Pass Filtering

Low pass with some cut-off frequency

Keeps most of the signal energy

Equivalent to Global Smoothing

A
1

> > —
Low pass filter
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Looking for an Optimal Filter
X(w) =Y (w)H(w)

Y H()PTA: ?

T SN

Assumption: Signal and Noise are
Stationary independent random processes
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Spatial filtering restoration

The noise is assumed to be uncorrelated with the original
image:

Fote.y) = [~

~ Fi(o.B)Hp(x—o.y—B)dodp +N(x.y)

—_—C2

Or: o o o o
r Fo(x,y) = F(x,y) ® Hy(x,y) + N(x, )

The restoration is a LTI filter:

I:“,(x. y) = j_"; j:o Fola,P)Hp(x —o,y —P) do dp

SPATIAL
IMAGE RESTORATION
o— DEGRADATION 3 »  FILTER )
FIII.IJ Fu[‘-l’) FI{I-I'}
Hp(x.y) Hg (x.y)

Nix,y)
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Spatial filter restoration

Substituting

By Fourier transform:

ﬁ‘,(x,y) = [F,(x.y) ®HD(x.,V)+N(-Y,,V)] @) HR(X,,V)

o, 0,) = [Flo,0)H,(0,0)+No, o) H(o, o)
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Inverse Filter
In this case the restoration filter is chosen so that:

1

Hp (@, ®y) = Hpy(o,, (’)y)

The spectrum of the reconstructed image becomes:

N, )

U( . my)

ﬂ(m m) = Flo,. Jj|+

The restored image field becomes:

N @, ©
F, = F — Y
(x,y) = Fylx, y)+4 J_m.[-m Hp (o, ®)
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exp {i(m.x + myy)} dm dmy



The inverse filter

Ijl (w"'O)I \
I

With Hy (wy,wy ) =1

|#R(w,.o)

| ith Hy (wywy)

W
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The Wiener filter

In the general derivation of the Wiener filter we assume
that the ideal image F/(x,y) and the observed image F,(x,y)
are samples of a two dimensional continuous stochastic
field with zero value spatial mean.

Wiener imposes the minimization of the mean-square
restoration error:

FE = Ity {[F] (x,y) —151 (x,y)]z}
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Wiener criterium for Restoration filter

£=B|[F,(v.0)-F (x2)] |-

-{[F(0.0,)-F(0.0)] |-

=B{[F,~(£3, + )%, ] |

Minimization by derivation
(

or _ [ 0
0¥, |0,

E{Z(F, (a)x,a)y)—l:“, (a)x,a)y ))(—FO (a)x,a)y))} =0

Video Signals Marco Marcon

(F—(FH,+N)H, | =




Orthogonality condition

The mean square error is minimized when the following orthogonality
condition is met for all image points:

N

E{[FI (a)x,a)y)—F, (a)x,a)y)]FO (a)x,a)y)} =0

Considering:
F(x3)= [ | Fo(a.B)Hy (x—a,y—B) da df
We obtain: e
E{F} (x,)F, (x,y)}: j jE{FO (a,B)F, (x,y)} Hy(x—a,y-p) da dp
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Wiener formulation (spatial domain)

If the images are assumed as jointly stationary
processes the expectation value can be expressed as
covariance functions:

o0 0

E{E(x,y)FO(x,y)}=_j j E{F,(a.f)F,(x.\y")} Hy(x—a,y-p) da df

EAF, (x,9) Fp (%,9)} Ky,

KFJFo(x —.,\',, Y _}’,) - j—mj—mKFOFo(a _x” B _-}”)HR(x -0,y - B) do. dB
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Wiener formulation

The Fourier transform of the covariance function is the
Power Spectral Density (PSD), or power spectrum.

Taking the two-dimensional Fourier transform:

Wi I 0( ®,., (1))_..-)

W p (0, ©)

Hp (o, (oy) =
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Wiener formulation

Since:

K(xls_yls t]9 xzs_}”z»tZ) =E{ [F('x]uyly t])_nF(-x]s_ylst[)][F*(-xzs_yzs fz)_n?“(xZ,_yz, tz)]}

And:
We p (O, 0,) = Hp (0, 0,) Wi (0, )

since the cross-correlation between F/(x,y) and N(x,y) is a zero matrix.

We obtain:

Wr

2
. FO((DX, ®,) = ‘}[D((ox, a)y)| WFI((DA_, 0)},) + Wy(o, ooy)
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Wiener filter model

The resulting filter is then:

*k
Hp (0, ©) W (0, ®,)
Hp(O, ®) =

2
Hy (o, m},)‘ W (0, 0)+ Wy(o, o)
Or:

£
Hp (0, @)

2
]HD((DX, 00},)] + Wy, 0))__,)/ WFI(O)A_, (oy)

Hy(o, ®,) =
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Wiener results

|WF|(W"°)| \

|7V (wy. 0)

I"‘D("‘l-")

|1‘R(wl'°)| ___/k
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Degradation & Restoration Examples
(Atmospheric Turbulence Model)

H(ul v) — e_k[(u+M/2)2+(v_N/2)2]5/6

ab
e il

FIGURE 5.25
Illustration of the
atmospheric
turbulence model.
(a) Negligible
turbulence.

(b) Severe
turbulence,

k = 0.0025.

(c) Mild
turbulence,

k = 0.001.

(d) Low
turbulence,

k = 0.00025.
(Original image
courtesy of
NASA.)
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Degradation & Restoration Examples (inverse filter)

5
H(u,v) = e~ klu+M/2)?+w-N/2)?| /6

ab
el

FIGURE 5.27
Restoring

Fig. 5.25(b) with
Eq. (5.7-1).

{a) Result of
using the full
filter. (b) Result
with H cut off
outside a radius of
40; (c) outside a
radius of 70; and
(d) outside a
radius of 85.
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Degradation & Restoration Examples: Gonzalez & Woods
“ A s e

abc

FIGURE 5.28 Comparison of inverse- and Wiener filtering. (a) Result of full inverse filtering of Fig. 5.25(h).
(b) Radially limited inverse filter result. (¢) Wiener filter result.

H*(u,v)S Fuw)

/F\(u, V) WG(u, V)

—k[(u+M/2)2+(v—N/2)2]5/6 2
H(u,v) =e _Sf(u,v)|H(u,v)| +5p (W)

= H (wv) ‘G(u )

|Hwy)| "ty (W) /Sy (uv)

1 |H(u,v)|2

G(u,v)

_H(u,v) |H(u,v) |2 +Sp(wv)/Sf(u,v)
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Degradation & Restoration Examples

Planar Motion Model

ab

FIGURE 5.26 (a) Original image. (b) Result of blurring using the function in Eq. (5.6-11)
witha=b=01land T = 1.
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Degradation & Restoration (inverse and Wiener Filters)

w ;. \.t!*..._.sjg-
R ]

FIGURE 5.29 (a) Image corrupted by motion blur and additive noise. (b} Result of inverse fillering, (¢) Result
of Wiener filtering, (d)-(I) Same sequence, but with noise variance one order of magnitude less (g)-{i) Same
sequence, but noise variance reduced by five orders of magnitude from (a). Note in (h) how the deblurred

image is guite visible through a “curtain™ of nojse.

Marco Marcon
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Wiener Deconvolution

Wiener deconvolution can be used effectively when the
frequency characteristics of the image and additive noise
are known, to at least some degree. In the absence of noise,
the Wiener filter reduces to the ideal inverse filter.
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Parametric estimation filter

Cole proposed a restoration filter with a transfer function:

WF[( (Dx’ O)y) } 1/2
, )

2
Hp (0, 0)]" Wy (0, ©) + Wy (o,

ﬂR(mx’ wy) =

The power spectrum of the filter output is:

2
ng_[( ®, ) = ’ﬂR( o, (o}_,,)‘ WFO(O)X, ®,)

where

2
WFO(O)'\_") 0)):) = “q{D(mx’ m}!)‘ ‘WFI(Q),\" 0)'15) + WN( mx? (D}))
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Parametric estimation filter

The previous filter gives a reconstructed image with the same power
spectrum of the original image:

Wy (0, 0,) = W, (0, 0)

And it is called the power spectrum filter, while for the Wiener filter:

2 2
(@, 0 ) [ (0, 0,)]

WO ) = 2 w
Hp (0, @)W (0, 0,)+ Wy(o, o)
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Why isn’t it enough?

Mismatches and errors = global artifac




The Windowed Fourier & Wiener Filter

Image has a local structure

= Denoise each region based on its own statistics
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Can we do better?

Why restrict ourselves to a Fourier basis?

Other representations can be better:
o Sparsity = Signal/Noise separation
> Localization of image details

Wavelets
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Fourier Decomposition

WWW k(1) W +

k(2) +

k(3) +
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Windowed Fourier Decomposition

WWW = k(1,1) M\ + K12 + ...

k(2,1) — 4+ k(2,2) + --.

k(3,1) 4+ k(3,2) + --.
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Wavelet Decomposition
mother wavelet
ﬁ scaled & translated
versions
WMWM - k(1,1) “W‘+ oy

k(2,1)

k(3,1) — + k(&Z)—#W— <+ k(3,3) W +-.-
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Space-Frequency Localization

Better distribution of the “Coefficient Budget”

Windowed Fourier Wavelets
Uniform tiling Non-uniform tiling

3/\ f N

c

Q

>

O

o

/Z
coefficients R S x

spaEe i
(time)
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Discrete Wavelet Transform (DWT)

Recursively, split to

o Approximation Signal
o Details v )\
LPF HPF
| |
20 21
g !
LPF HPF Details %-I
| | ®
21 20
g | !
LPF HPF Details
| | -
21 210 o
2

Voo

Approx Details
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Wavelet Transform - Example

Original image 1 level DWT
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Wavelet Transform - Example

Original image 2 level DWT

E ot [iein E
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Wavelet Pyramid
Low-pass residual

(approximation) \

Sub-band
(detail)

scale

orientation
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Wavelet Thresholding (WT)

Wavelet = Sparser Representation

Improved separation between signal and noise at different scales and
orientations

Thresholding (hard/soft) is more meaningful

1Ll
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Performance Evaluation
Denoised Images

Original Gaussian Anisotropic Bilateral
o =20 Smoothing Filtering Filtering

Windowed
Weiner Hard WT

I Buades et al. (2005) I
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Performance Evaluation
Method Noise

Gaussian Anisotropic Bilateral
Smoothing Filtering Filtering

Windowed
Weiner

I Buades et al. (2005) I
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A Probabilistic
Perspective




Which image do you prefer?
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A Probabilistic Perspective

With some prior knowledge about images

Denoise = “find an optimal explanation”:

° MAP — Maximum a posterior
X = argmax,p(x|y)

o MMSE — Minimum Mean Square Error
% = argming E{(2(y) — x)*} = E(x[y)
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Motivation - Drawback of Locality

Previous methods perform some local filtering

= mixing of pixels from different statistics

= blur

Goal:
Reduce the mixing & “smarter” localization
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Motivation - Temporal perspective

Assume a static scene

Consider multiple images y(t) at different times
The signal x(t) remains constant

n(t) varies over time with zero mean
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“Temporal Denoising”

Average multiple images over time

Video Signals Marco Marcon



“Temporal Denoising”

Average multiple images over time
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“Temporal Denoising”

Average multiple images over time
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Redundancy in natural images

I Glasner et al. (2009) I
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Single image “time-like” denoising

2=

Unfortunately, patches are not exactly the same
= simple averaging just won’t work
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Non Local Means (NLM)

Baudes et al. (2005)

Use a weighted average based on similarity
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From Bilateral Filter to NLM

_y@-yWDOIT  |ji—j)?

1
X(i)pL = C E 3’(/')\3 20° € 2p*
l .
]

| ]

| |
intensity weight  spatial weight

_ly@-y\M)I?

s 1 _ >
x(l)NLMlxl = Ez v(j)e 20
l .

J

p—)OO
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From Bilateral Filter to NLM

_ly@-y\MHlI?

. 1 _ >
x(l)NLMlxl = EE v()le 29
l

l Patch similarity

_SSD (y(Ni)—y(Nj))

YO =7 ) y(le 27
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Performance Evaluation
Method Noise

Gaussian Anisotropic Bilateral
Smoothing : Filterin

NLM

Windowed
Weiner

Hard WT

Soft WT

I Buades et al. (2005) I
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Blind — deconvolution
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Introduction

Image Restoration is an important part of many image processing
applications. Its main goal is to recover the original image form a
degraded observation.

The existing linear image restoration algorithms assume that the PSF
(point spread function) is known a priori and attempt to invert it.
However for many situations PSF is not known explicitly and one has to
estimate the true image and the PSF simultaneously using partial or no
information about the imaging system, hence the process is called blind
image restoration
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Blind image restoration

nix,y)

f r;f;_)"j h r:’x’.}.-j

=

True Immage Degradation Model

g (xy) =flxy) *h(xy)

+nxy)
Degraded Image
A )
) &) Blind Deconvolution B
* Algorithm Partial Information
Image Estimate ~—— about the true Iinage

and PSF
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Problem Analysis

In practice there will always be some additive noise.
Therefore the degradation of the image is represented by

g(z,y) = f(z,y) * h(z,y) + n(z,y)

Typically the PSF is a low pass filter and deconvolution will
behave as a high pass filter, which will result in amplification
of high frequency noise components. To avoid this,
regularization of the problem will be required. For iterative
algorithms, this can be achieved by stopping the iterations
at the point where the total error (due to blurring and due
to noise amplification) reaches a minimum.
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IBD Algorithm

— FAY
F(uy) Form new estimate Hev)
of F from G and H
IFFT FIT
l\ n 5
fxy) h(x,y)
: "I : : All negative
mpose Image mpose Image
. IBD .
Constramts Constraimnts Values are put
L to zero.
FAY b N
fxy) je—fy(xy) hix.y)
| mitial estunate
FFT IFFT
| Form new estimate [
Fay - —
F ) of H from G and ¥ Hiwv)
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Common problems

This basic approach has two major problems to deal with:

1) Defining the inverse filter in regions where the function to be
inverted has low values, is difficult.

2) We do not have any information at the spatial frequencies where
G(u,v) or F(u,v) are zero.

To attack these problems, we change the way we implement the Fourier
constraints. So at each iteration those estimates are averaged to form a
new estimate Eq.(2). The B weight parameter is important for the
convergent rate. The regions below the noise level in the convolution,
are dealt with by only using the estimate

i . Glu, v
Fun(wv) = (1= OF(w0) + 55 =
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Simulated Annealing Algorithm

McCallum has shown that the simulated annealing
algorithm (a Monte-Carlo global minimization technique)
can be applied to the blind deconvolution problem, via the
minimization of the following cost function.

En{f *h — g}
En{g}

Where the energy of an image is defined by

En{a} = i [a(x,y)T.

X=—00
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Simulated Annealing 2

The algorithm will randomly perturb the images and will calculate the change in
the cost function AQ. If AQ <0then it will accept the perturbation. If AO >0 then
it will accept the perturbation with the probability ¢*%", where T is the
temperature parameter. The algorithm will start with a large value of T and
gradually lower it as the iteration process progresses. When T is large, the
algorithm is unlikely to become trapped in local minima of Q, since the
perturbations which increase O can be accepted.

Simulated annealing optimization is similar to the annealing of metals. If the
liquid metal is cooled slowly, it will reach to the absolute minimum energy
state related to the complete atomic ordering of the metal. If the liquid is
cooled too quickly, then the atoms will reach to a suboptimal energy state.
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Simulated Annealing 3

The algorithm starts with images f, (x,y) and h, (x,y) whose pixels are pseudo-randomly

distributed.

1. Calculate values of T' (temperature) and a (scale of perturbation)

2. Scale f(x,y) and h(x,y) by factors £ and 1/,8 respectively. So that the scaled images have
equal RMS value.

3. For each pixel of an image:

1. fp (x,y) = f(x,y)+ ar,where 7, is a pseudo-random number, uniformly distributed
in the range [-0.5, 0.5]

2. Iffp(x,y)<0 set fp(x,y) 0

3. AQ=0(f,.h.g)-0(/.h.g)

4. If AQ<Oorif AO>0and e >, (where r, is a pseudo random number,

uniformly distributed in the range [0, 1]), then accept the perturbation otherwise reject.
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Results

blurred Iimage
g =5
r | |
v
IBD Algorithm
¥ ¥

Marco Marcon
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Results

Blurred Image with Noise After 200t jteration After 500t jteration

Tmitial Random Guess

IBD result with 3% noise
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Results

Blurred Image with Noise

D Tt
= . i i Y
2 L P
= == i o P
ool .lh‘I-# . "
'-Il'lll {3 -
)l Ilk v g _..",.';' -
O B e
e ¥
W . ! 3 .-"'" o
& il h
L]

A different Iimtial Random Guess

IBD result with a different initial guess
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Results from SA

mitial random guesses

Original Images

w Convolution N -
| v | |

- ’ E Simulated Annealing
P —_—

Algorithm

} }
SA result without any noise
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Results from SA

Amnealmg

Blhured Image With Noise f

< Quenching

SA result with contamination level 102
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Contamination Level and Quenching

The Contamination Level is defined as:
CL = En{noise(x,y)}/En{g

Quenching is a simulation with T=0 and with a=1. Slowly
reducing the temperature is crucial for simulated annealing
algorithm that it may become trapped ina Iocal minimum
close to the starting point. | |

. Quenchlng
- Normal

.............................

I
40
n
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Noise models
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Noise Models
Rayleigh

z
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Noise Models

Erlang (Gamma)

/ abzh—l e—u; f _ 0
p(z) = { (b - 1)! uhie
0 forz < 0
p(z)

b

b i
b e—(b-1)

o= —,

HE

(b -'l)/a Z
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Noise Models

Exponential

2(2) ae * forz=10
=
() forz < 0
P(2)
_1
S a s Exponential
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Noise Models

Uniform
() bl fa=z=<5»5
P\Z) = a
0 otherwise.
p(z)
_a+b -
M - 2 Uniform

2 (b— d)°
12 '

Video Signals a b z




Noise Models

Impulsive (salt and pepper)

p(z) =

Video Signals

By

forz =4
forz = b
otherwise

P(z)

Impulse




Original image
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How to generate a generic noise random variable
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How to generate a generic noise random variable

PriR</}=U,(r) 4  Frlx) Sample R from URr(r) and find X:

X =F;'(R)

FX (R) Is the desired cdf.

Question: which distribution does X obey?

-1
P{x <x}=P{F;'(R)< x|
Application of the operator Fx to the argument of P above yields

P{X <x}=P{R<F,(x)}=F,(x)
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