Video Signals

ROBUST FEATURES



Taxonomy of 2D correspondence maps
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Correspondence maps

s Notation:

- - T
« Homogeneous coordinates; reference image x = [x v 1)
* Inhomogeneous coordinates; input image  x'=(x' }-’}T
= [ranslation
X =x+t or I’=[I t];

s Euclidean transformation (rotation and translation)

| cosd —sind
X = X

sn& cos@ t, "

m Scaled rotation (similarity transform)
. r-msﬂ —5-51n & II}
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Correspondence maps

= Affine transformation {gﬂn a,, am}

iy dyp dp

= Motion of planar surface in 3d under orthographic projection
s Parallel lines are preserved

Argyropelecrs alforsi, Sterpoptyx diaphana,

F ey
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Correspondence maps

s Perspective transformation (e By By
(homography); X ~| b, h, h, X
homogeneous coordinates — ST

th hy, "1‘13:1_;'

= Inhomogeneous coordinates (after normalization)

hyX + 0y, v+ hy, hyX + 0y v+ hy,

e

- -
o
aef-il
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= [Motion of planar surface in 3d
under perspective projection

s Straight lines are preserved

AT
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2d correspondence maps - summary

Name Matnx # D.O.F. | Preserves: Icon

translation [ I ‘ t Lﬂ 2 orientation + - - -

rigid (Euclidean) [ R ‘ t L ; 3 lengths + - - - O

e

sumilarity [ s ‘ t ]2}:1 4 angles + - - - <>

atfine [ A } . 6 parallelism + - - - B
223

projective [ H L:ﬂ 3 straight lines E‘
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How to find the correspondence map?

= Direct methods
e Calculate an error metric to determine similarity between
input image f(x,v) and warped reference image g(x+Ax,yTAy)
e Based on pixel values, uses all information in the image
e Search or gradient-based method in model parameter space

s Feature-based methods
e |dentify location of robust feature points

e Establish feature correspondences based on a feature
characteristics
e Obtain model parameters from feature correspondences

Video Signals Marco Marcon



Displacement Estimation by Block
Matching

Image g(x,v) Image A(x.v)

... process repeated for another
measurement window position.
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Integer Pixel Shifts

Image g(x,y) Image f(x.y)
Measurement window is Rectangular array
compared with a shifted array of pixels is selected
of pixels in the other image, as a measurement window

to determine the best match
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Integer Pixel Shifts

=24 Bl az 43 44 a0 32 ) 25 3z 23
34 44 a5 45 45 42 30 Z1 25 27 18
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40 63 42 2 5 ar [ 1] [ F 1] FF i
120 114 112 111 B 3z
T4 11 130 134 @ 1id 14 188 189 e 2
130 128 124 125 BE 4
T8 127 130 1348 g 128 18 108 124 1] ¥
131 124 127 127 1] &2
80 1z 131 113 1 1M 183 e [ 1] B
T 71 T3 Th B3 &2
L] 78 7 11 3 73 g3 ] |} | g Fl F:!'
22 ad N ad =9 a0 40 a1 a1 33 25
Measurement window is Rectangular array
compared with a shifted array of pixels is selected
of pixels in the other image, as a measurement window

to determine the best match
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SSD Values Resulting from Block
Matching

SSD

: Estimated displacement

..............

e | |nteger-pixel accuracy

=] 10
Verticq 12 . ‘ | ehift
tical shif A Horizonta! St ™
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Multi-scale block matching

Displacement

vector field
Black
matching
g (x.v)
Filtering
and
Block ] subsampling
matching

T Fllterlng

and
Block

} "’ subsampling
matching 4"
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Absolute difference between images

w/0 alignment w/ integer-pixel alignment
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Interpolation of the SSD Minimum

SSD 4

Sub-pixel _
Accurate Fit parabola
Minimum through

>3 points

approximately

Horizontal shift A,
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2-d Interpolation of SSD Minimum

Paraboloid S
s Perfect fit through 6 points {f;%

......

= Approximate fit through e

>6 points e R
Wl ot : S :
CIN R : .»;1':;3:'};3}"::-:-:E@:"; SR / 5

J’
-l' .l'.f
.grrr T
T o e :
Jf' .r.p'*n"'frr.r.r =
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Sub-pixel accuracy

= Interpolate pixel raster of the reference image to desired sub-pixel
accuracy (typically by bi-linear interpolation)

= Straightforward extension of displacement vector search to fractional
accuracy

= Example: half-pixel accurate displacements
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Fourier Transform
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Rotation and Scale effects
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Polar transform

A rotation is a vertical translation!
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Log-Polar Transform

Expansion: f(¢) — f(at)
Using logarithmic scale:

f (log(2)) — f (log(a) +log(2))

A scale variation corresponds to a horizontal translation
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Translation, rotation and scaling invariance

Translation invariance can then be obtained through a first
2D Fourier transform and disregarding the phase.

A further transform of the previous Fourier Amplitude in
log-polar coordinates, where rotations and scaling become
translations, is then applied.

A second 2D Fourier Transform is then applied and phase is
again disregarded.

The final amplitude of the second 2D Fourier Transform is
then invariable to translation, scaling and rotation.
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Moments for pattern recognition

Geometric Moments

Let I{x, v) be a continuous image function. Its geomertric moment of order p 4 ¢
15 defined as

o0 o
M pg =f f xPy9i{x, v)ydxdy
~oo J —00
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Moments

combinations of normalized versions of the moments. Specifically, our goal will
be to define moments that are invariant to:

Translations:
X'=x+4a, y=y+b
Scaling:
X=ax, Y =ay
Rotations:
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Central Moments

Central moments:
Hpg = ff Ix, y)x =X)(y = 3)7dxdy

where

Central moments are invanant to translations.

Normalized central moments:

K pg pt+qg+2
H = — - }f‘ —
T gy 2

These are easily shown to be invariant to both translation and scaling
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Hu's seven moments

The seven moments of Hu: Hu [Hu 62] has defined a set of seven moments that
are invariant under the actions of translation, scaling, and rotation. These are

ptaq=2

@ = mo + Noz

d2 = (n20 — no2)” + 4ny,
p+qg=3

¢3 = (30 — 3m2)* + (no3 — 3n21)°

¢s = (30 + Mm2)* + Ojos + n21)*

s = (mo = 3m2)(mo + n2)[(m0 + m2)* =321 + ne3)*]
+ (nos = 3n21)(no3 + na)l(mos + m21)* = 3(ma + m0)°]

b6 = (n20 — no2)l(mo + m2)> = (21 + no3)*)
+4nn (o + m2)(nos + na1)

d7 = (321 = no3) (30 + m2) (M0 + m2)* = 321 + no3)?]
+ (30 = 3m2)(n21 + noa)[(Mo3 + n21)* = 3(m0 + m2)*]
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Discretization

Foradigial image /(¢ j),withi =0, 1, ..., Nx=1,j=0,1,..., Ny — I, the
preceding moments can be approximated by replacing integrals by summations,

mpg = > 1, )i’ j 724\
i

In order to keep the dynamic range of the moment values consistent for Gucicin-
sized images, a normalization of the x — y axis can be performed, prior to the
computation of the moments. The moments are then approximated by

myg = 3 1(xi. yi)x!y!

where the sum is over all image pixels. Then x;. y; are the coordinates of the center
point of the ith pixel and are no longer integers but real numbers in the interval

x;j € [—=1,+1), v € |=1, +1]. Fordigital images, the invariance properties of the
moments we have defined are only approximately rrue.
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The Byzantine symbol “petasti”
-2 - ﬂ

(a)

— :) D

Moments 0 Scaled | BO® 15° Mirror 90"

P 93.13 91.76 93.13 9428 93.13 93.13
& 58.13 56.60 58.13 58.59 58.13 58.13
&3 26.70 25.06 26.70 27.00 26.70 26.70
Py 15.92 14.78 15.92 15.83 15.92 15.92
@5 3.24 2.80 324 3.22 3.24 3.24
s 10.70 0.71 10.70 10.57 10.70 10.70
7 0.53 0.46 0.53 0.56 -0.53 0.53
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Local Binary Pattern (LBP)

Compare 8-connected neighborhood with center pixel

If pixel > center, replace with ‘1’ else ‘0’
Construct a binary number by going clockwise

Replace the center pixel with the decimal value of the binary number

e
—— =

-

.

ojojo]
6 | Threshold _ | 1 1] | ggﬂgrrg;ﬁ%%mﬂll
1jo]o 's,

Binary number is sensitive to starting point — LBP is not rotation invariant
Rotate binary string to minimize decimal value for rotation invariance
Minor changes in illumination can change the decimal value

Partition image into cells and construct LBP histograms in each cell
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LBP Example from OpenCV

Notice how LBP feature are illumination invariant

v/
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SIFT descriptors

s SIFT - Scale-Invariant Feature Transform [Brown, Lowe, 2002]

s Sample thresholded image gradients at 16x16 locations in scale space
(in local coordinate system for rotation and scale invariance)

n Generate 4x4 orientation histograms with 8 directions each;
each observation weighted with magnitude of image gradient and

window function
s 128-dimensional feature vector

Image gradients Keypoint descriptor
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SURF descriptors

. SURF — Speeded Up Robust Features [Bay ef al. 2006]

= Compute horizontal and vertical pixel differences, dx, dy

(in local coordinate system for rotation and scale invariance,
window size 200 x 20c, where 2 is feature scale)

= Accumulate dx, dv, and |dx|, dv over 4x4 subregions
(SURF-64) or 3x3 subregions (SURF-36)

=  Normalize vector for gain invariance, but distinguish bright blobs and dark blobs
based on sign of Laplacian (trace of Hessian)

> dx
P
> dy
2 lay|
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Affine parameters from feature
correspondences

n Given: feature correspondences
r ) .
(xf,}ff)e(xf}}ff) i=1....N

s Set up 2V linear equations with 6 unknowns dy,, ;. Ay, , iy, Ay Ayy

. Apg  dpyyp A
X; X,

m Solve by least mean squares (or least median of squares)
Easily extended to higher-order linear warping model, e.g.,

P . 2 .2 :

3 3
Vi =0+ DX, + by, +box.” + b5y +bx,y,
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Feature matching
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Feature matching

eExhaustive search

o for each feature in one image, look at all the other
features in the other image(s)

eHashing

o compute a short descriptor from each feature vector, or
hash longer descriptors (randomly)

*Nearest neighbor techniques
o k-trees and their variants
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What about outliers?

e T
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Feature-space outlier rejection

Let’s not match all features, but only these that have “similar enough”
matches?

How can we do it?
o SSD(patch1,patch2) < threshold
> How to set threshold?

046 - -mrmm-nn R o RLRCERETEE B e e :
. : ' ——— correct matches
v H H — — —incorrect matches | :
0.44H - el SRITELETELRE SRTTMPTRTIIRE Preseeesien ke T

probability density
o
®
T

|
0 10 20 30 40 50 60
1-NN squared error
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Feature-space outlier rejection

A better way [Lowe, 1999]:
o 1-NN: SSD of the closest match

o 2-NN: SSD of the second-closest match

> Look at how much better 1-NN is than 2-NN, L R R e S et
e.g. 1-NN/2-NN R ST O O == |
° That is, is our best match so much better A A A T A A
than the rest? 5_....:.._:....:...:...E....E....:...:....:..If..:

probability density

0 01 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1
1-NN/2-NN squared error
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Can we now compute H from the blue points?
> No! Still too many outliers...
> What can we do?
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Matching features

What do we do about the “bad” matches?
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RAndom SAmple Consensus

Select one match, count inliers
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RAndom SAmple Consensus

Select one match, count inliers
Video Signals Marco Marcon




Least squares fit

Find “average” translation vector
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RANSAC for estimating homography

RANSAC loop:

Select four feature pairs (at random)
Compute homography H (exact)
Compute inliers where SSD(p,’, Hp,) <¢

Keep largest set of inliers

A A

Re-compute least-squares H estimate on all of the inliers
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RANSAC

(T T

F‘..! r—
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Example: Recognising Panoramas

M. BROWN AND D. LOWE,
UNIVERSITY OF BRITISH COLUMBIA



Why “Recognising Panoramas”?

Video Signals Marco Marcon



Why “Recognising Panoramas”?

1D Rotations (0)
o Ordering = matching images
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Why “Recognising Panoramas”?

1D Rotations (0)
o Ordering = matching images
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Why “Recognising Panoramas”?

1D Rotations (0)
o Ordering = matching images
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Why “Recognising Panoramas”?

1D Rotations (0)
o Ordering = matching images

e 2D Rotations (0, ¢)
- Ordering # matching images
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Why “Recognising Panoramas”?

1D Rotations (0)
Ordering = matching images

e 2D Rotations (0, ¢)
- Ordering & matching images

TN
o to et L ATETR RS |10 R
""I‘.:.‘-'-E""rl ||Iﬁ'|_§|._||—|_, AR

P
Ff s
)
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Why “Recognising Panoramas”?

1D Rotations (0)
° Ordering = matching images

e 2D Rotations (0, ¢)
— Ordering 7 matching images
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Why “Recognising Panoramas”?

i one AT ‘
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RANSAC for Homography
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RANSAC for Homography

c
O
O
—
©
=
@)
O
—
©
=
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RANSAC for Homography
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robabilistic model for verification

Video Signals Marco Marcon




Finding the panoramas
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Finding the panoramas
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Finding the panoramas
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Homography for Rotation

Parameterise each camera by rotation and focal length

p 0 —0i3 05
R; = el%lx, 16,1, = 03 0O —0;1

—0i> 01 0O
f; 0 O]
K’i: O fz O
0 0 1

This gives pairwise homographies
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Bundle Adjustment

New images initialized with rotation, focal length of
best matching image
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Bundle Adjustment

New images initialized with rotation, focal length of best
matching image
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Multi-band Blending

Burt & Adelson 1983
> Blend frequency bands over range oc A
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Results
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OPTICAL FLOW




Image Alignment

How do we align two images automatically?

Two broad approaches:
o Feature-based alignment

> Find a few matching features in both images

° compute alignment

o Direct (pixel-based) alignment

o Search for alignment where most pixels agree
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Direct Alignment

The simplest approach is a brute force search (hw1)
o Need to define image matching function

o SSD, Normalized Correlation, edge matching, etc.
o Search over all parameters within a reasonable range:

e.g. for translation:
for tx=x0:step:x1,
for ty=y0:step:vyl,
compare 1imagel (x,y) to image2 (x+tx,yt+ty)
end;

end;

Need to pick correct x0O, x1 and step
° What happens if step is too large?
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Direct Alignment (brute force)
What if we want to search for more complicated

transformation, e.g. homography?

wx' a b ¢
wy'l=1d e f|ly
W g h i1

for a=al:astep:al,
for b=b0:bstep:bl,
for c=cO:cstep:cl,
for d=d0:dstep:d1l,
for e=e0:estep:el,
for f=f0:fstep:£f1,
for g=g0:gstep:g1l,
for h=h0O:hstep:hl,

compare imagel to H(image2)

end; end; end; end; end; end; end; end;
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Problems with brute force

Not realistic
> Search in O(N?) is problematic
> Not clear how to set starting/stopping value and step

What can we do?
> Use pyramid search to limit starting/stopping/step values
o For special cases (rotational panoramas), can reduce search slightly to O(N?*):
> H= KRR, IK,* (4 DOF: f and rotation)

Alternative: gradient decent on the error function
° i.e. how do | tweak my current estimate to make the SSD error go down?
o Can do sub-pixel accuracy
> BIG assumption?

> Images are already almost aligned (<2 pixels difference!)

o Can improve with pyramid

o Same tool as in motion estimation
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Motion estimation: Optical flow

L] L}
Fh ol wpoh skl @ B [ N
[ ‘ - ol ol oF ok L |
\}:‘ - gy - [ ] ‘::.
L e et e - ." :::HI"-'
(M e SR SFEER-E i Hurrl it v

Will start by estimating motion of each pixel separately
Then will consider motion of entire image
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Why estimate motion?

Lots of uses
> Track object behavior

o Correct for camera jitter
(stabilization)

> Align images (mosaics)
> 3D shape reconstruction
o Special effects
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Problem definition: optical flow

./ Q °

AW ®
o—> I (@) .
H(x,y) I(z,y)

How to estimate pixel motion from image H to image I?

Key assumptions
« color constancy: a point in H looks the same in |
— For grayscale images, this is brightness constancy
« small motion: points do not move very far
This is called the optical flow problem
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Optical flow constraints (grayscale images)

(2,9)
\glsplacement = (u,v)

(z £ u,y + v)

H(x,y) I(z,y)

Let’s look at these constraints more closely

» brightness constancy: Q: what's the equation?
H(x,y)=l(x+u, y+v)

« small motion: (u and v are less than 1 pixel)
— suppose we take the Taylor series expansion of I:

I(x+u, y+v) = I(x, y)—|—ﬂ 8Iv—l—h|gher order terms
~I(z,y) + ghu+ 9L
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Optical flow equation

Combining these two equations
0=I(z+uy+v)— H(z,y) shorthand: I, = 9L
~ [(z,y) + Ipu+ Iyv — H(z,y)
~ (I(z,y) — H(z,y)) + Izu + Iyv
~ It + Irxu + Iyv
~ I} +VI-[u v]

In the limit as u and v go to zero, this becomes exact

0=1+VI-[% %)
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Optical flow equation

O=1I1+ VI [u v]

Q: how many unknowns and equations per pixel?

2 unknowns, one equation

Intuitively, what does this constraint mean?

« The component of the flow in the
gradient direction is determined

« The component of the flow parallel
to an edge is unknown

This explains the Barber Pole illusion
http://www.sandlotscience.com/Ambiguous/Barberpole lllusion.htm

http://en.wikipedia.org/wiki/Barber's_pole
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Aperture problem
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Solving the aperture problem

How to get more equations for a pixel?
o Basic idea: impose additional constraints

° most common is to assume that the flow field is smooth locally
° one method: pretend the pixel’s neighbors have the same (u,v)

> If we use a 5x5 window, that gives us 25 equations per pixel!

0 = Ii(p;) + VI(py) - [u v]

I.(p1) Iy(p1) | - Ii(p1) |
L+(p2)  Iy(p2) [ u ] — _ | Li(p2)
i Ix(1;25) fy(I;25) ] i ft(1;25) |
2;42 le 2 bl
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RGB version

How to get more equations for a pixel?
° Basic idea: impose additional constraints
° most common is to assume that the flow field is smooth locally
> one method: pretend the pixel’s neighbors have the same (u,v)
o If we use a 5x5 window, that gives us 25*3 equations per pixel!

- I(p1)[0]  Iy(p1)I[O] I:(p1)[0.
I:(p1)[1]  Iy(p1)[1. It(p1)[1]
I.(p1)[2]  Iy(p1)[2 [ . ] It(p1)[2]
I:(p25)[0] Iy(p2s)[0] | L ° I;(p25)[0;
Ix(p25)[1] Iy(p2s)[1] I1(p25)[1]

| Ix(p25)[2] Iy(p2s)[2] | | Ii(p2s5)[2] |

A d b
(5X2 2x1 75Xx1

Note that RGB is not enough to disambiguate
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Lukas-Kanade flow

Prob: we have more equations than unknowns

A d=b —— minimize ||Ad —b||?
265x2 2x1 25Bx1

Solution: solve least squares problem
* minimum least squares solution given by solution (in d) of:

(AT A)Y d= ATD

2X2 2x1 2x1

Shle SELy|[u] _ [ S LI
S Lly, Sy ||v|~ | S

AT A Al

 The summations are over all pixels in the K x K window
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Aperture Problem and Normal Flow

The gradient constraint:

lu+lv+1, =0

VielU =0

Defines a line in the (u,v) space

Normal Flow: \

It?\‘

— u
uJ_

vl
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Combining Local Constraints

N VI'eU =-1
T VI eU =-1
- VI eU=-1I
u etc.
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Conditions for solvability

o Optimal (u, v) satisfies Lucas-Kanade equation

> dxedy D Iply u | | 2l
Do Ixly Y Iyly v | > Iyly

AT A Alp

When is This Solvable?

« ATA should be invertible
« ATA should not be too small due to noise

— eigenvalues A, and X, of ATA should not be too small
« ATA should be well-conditioned

— M/ A, should not be too large (A, = larger eigenvalue)
ATA is solvable when there is no aperture problem

Do dxdy Do Iply | Iy

=AT.A - [ > 1Dy >0 Iyly ] =2 [ I, ] (I I,] =Y vI(vD)!



Local Patch Analysis
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S vivn?t
— large gradients, all the same
— large A4, small A,
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Low texture region

— gradients have small magnitude
—small A, small A,
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High textured region

S vivn?t |
— gradients are different, large magnitudes *.
— large A4, large A,
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Observation

This is a two image problem BUT
o Can measure sensitivity by just looking at one of the images!

o This tells us which pixels are easy to track, which are hard

o very useful later on when we do feature tracking...
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Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?
> Suppose ATA is easily invertible

o Suppose there is not much noise in the image

When our assumptions are violated
» Brightness constancy is not satisfied
 The motion is not small

« A point does not move like its neighbors
— window size is too large
— what is the ideal window size?
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lterative Refinement

lterative Lukas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-
Kanade equations

2. Warp H towards | using the estimated flow field
- use image warping techniques

3. Repeat until convergence
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Optical Flow: Iterative Estimation

A fi@) | f(a)

estimate

Initial quess: dn = 0
update J 0

Estimate: dy =dg+d

<V

(using d for displacement here instead of u)
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Optical Flow: Iterative Estimation

A filz —d1) f5(2)

estimate

Initial guess: d
update J 1

Estimate: do =d; +d

<V
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Optical Flow: Iterative Estimation

A filz —d2) | f5(2)

estimate

Initial guess: d-
update

Estimate: d3 =d> +d

<V
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Optical Flow: Iterative Estimation

A fi(z — d3) = fa()

<V
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Optical Flow: Iterative Estimation

Some Implementation Issues:

> Warping is not easy (ensure that errors in warping are smaller
than the estimate refinement)

> Warp one image, take derivatives of the other so you don’t
need to re-compute the gradient after each iteration.

> Often useful to low-pass filter the images before motion
estimation (for better derivative estimation, and linear
approximations to image intensity)
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Revisiting the small motion assumption

Is this motion small enough?
> Probably not—it’s much larger than one pixel (2"9 order terms dominate)
° How might we solve this problem?
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Optical Flow: Aliasing

Temporal aliasing causes ambiguities in optical flow because
Images can have many pixels with the same intensity.

|.e., how do we know which ‘correspondence’ is correct?

A fi(z) fo(x) A  filz)  fo(w)
/\/ actual shift
7N/ . N
/ estimated shift
P -
nearest match is correct nearest match is incorrect
(no aliasing) (aliasing)

To overcome aliasing: coarse-to-fine estimation.
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Reduce the resolution!
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oarse-to-fine optical flow estimation

Gaussian pyramid of image H Gaussian pyramid of image |
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Coarse-to-fine optical flow estimation

- — fun iterative L-K ._-

lwarp & upsample

- — > run iterative L-K +—,

Gaussian pyramid of image H Gaussian pyramid of image |
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Beyond Translation

So far, our patch can only translate in (u,v)

What about other motion models?
o rotation, affine, perspective

ATA =D JVI(VD)'IT

Same thing but netebtdzaqq)an appropriate Jacobian

See Szeliski’s survey of Panorama stitching
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Recap: Classes of Techniques

Feature-based methods (e.g. SIFT+Ransac+regression)

o Extract visual features (corners, textured areas) and track them over multiple
frames

o Sparse motion fields, but possibly robust tracking
o Suitable especially when image motion is large (10-s of pixels)

Direct-methods (e.g. optical flow)

o Directly recover image motion from spatio-temporal image brightness
variations

> Global motion parameters directly recovered without an intermediate
feature motion calculation

> Dense motion fields, but more sensitive to appearance variations
o Suitable for video and when image motion is small (< 10 pixels)
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Block-based motion prediction

Break image up into square blocks

Estimate translation for each block

Use this to predict next frame, code difference (MPEG-2)
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