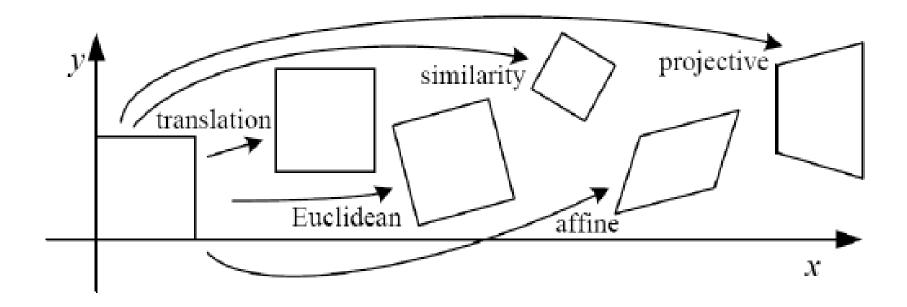
Video Signals

ROBUST FEATURES

Taxonomy of 2D correspondence maps



Correspondence maps

- Notation:
 - Homogeneous coordinates; reference image <u>x</u> = (x y 1)^T
 Inhomogeneous coordinates; input image <u>x'</u> = (x' y')^T
- Translation

$$\mathbf{x}' = \mathbf{x} + \mathbf{t}$$
 or $\mathbf{x}' = \begin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix} \underline{\mathbf{x}}$

Euclidean transformation (rotation and translation)

$$\mathbf{x}' = \begin{bmatrix} \cos \theta & -\sin \theta & t_x \\ \sin \theta & \cos \theta & t_y \end{bmatrix} \mathbf{\underline{x}}$$

Scaled rotation (similarity transform)

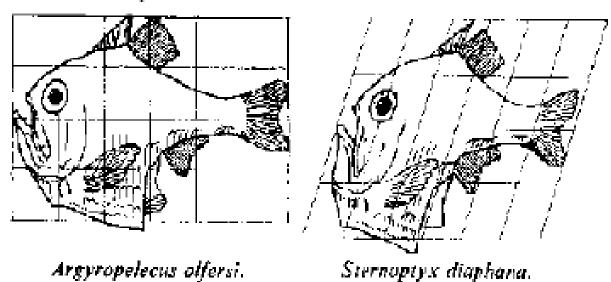
$$\mathbf{x}' = \begin{bmatrix} s \cdot \cos \theta & -s \cdot \sin \theta & t_x \\ s \cdot \sin \theta & s \cdot \cos \theta & t_y \end{bmatrix} \mathbf{\underline{x}}$$

Correspondence maps

Affine transformation

$$\mathbf{x}' = \begin{bmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \end{bmatrix} \underline{\mathbf{x}}$$

- Motion of planar surface in 3d under orthographic projection
- Parallel lines are preserved



Correspondence maps

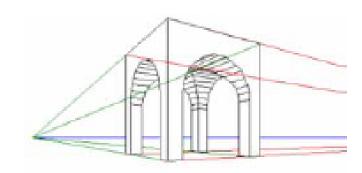
Perspective transformation (homography); homogeneous coordinates $\underline{\mathbf{x}}' \sim \begin{pmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{pmatrix} \underline{\mathbf{x}}$

$$\underline{\mathbf{x}}' \sim \begin{pmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{pmatrix} \underline{\mathbf{x}}$$

Inhomogeneous coordinates (after normalization)

$$x' = \frac{h_{00}x + h_{01}y + h_{02}}{h_{20}x + h_{21}y + h_{22}} \qquad y' = \frac{h_{10}x + h_{11}y + h_{12}}{h_{20}x + h_{21}y + h_{22}}$$

- Motion of planar surface in 3d under perspective projection
- Straight lines are preserved



2d correspondence maps - summary

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$\begin{bmatrix} I & t \end{bmatrix}_{2 imes 3}$	2	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c} R & t\end{array} ight]_{2 imes 3}$	3	lengths $+\cdots$	\Diamond
similarity	$\left[\begin{array}{c c} s R \mid t\end{array}\right]_{2 \times 3}$	4	$angles + \cdots$	\Diamond
affine	$\left[egin{array}{c} A \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

How to find the correspondence map?

Direct methods

- Calculate an error metric to determine similarity between input image f(x,y) and warped reference image $g(x+\Delta x,y+\Delta y)$
- Based on pixel values, uses all information in the image
- Search or gradient-based method in model parameter space
- Feature-based methods
 - Identify location of robust feature points
 - Establish feature correspondences based on a feature characteristics
 - Obtain model parameters from feature correspondences

Displacement Estimation by Block Matching

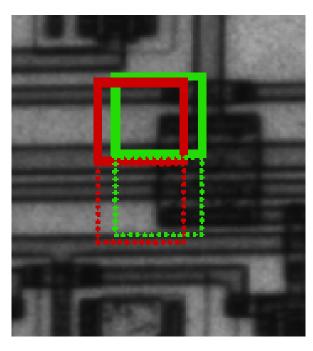


Image g(x,y)

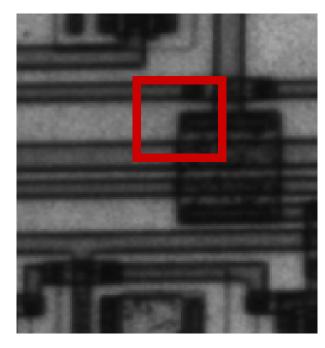


Image f(x,y)

. . . process repeated for another measurement window position.

Integer Pixel Shifts

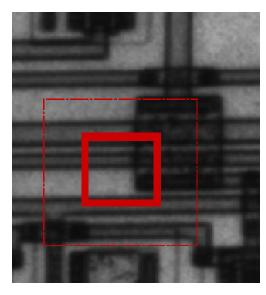
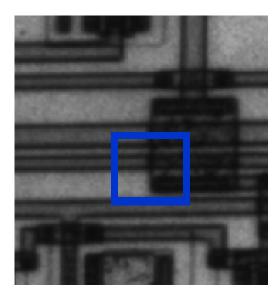


Image g(x,y)

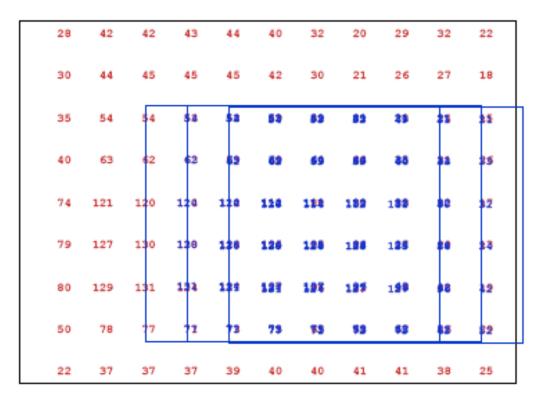
Measurement window is compared with a shifted array of pixels in the other image, to determine the best match



 $\underline{\mathsf{Image}\, f(x,y)}$

Rectangular array of pixels is selected as a measurement window

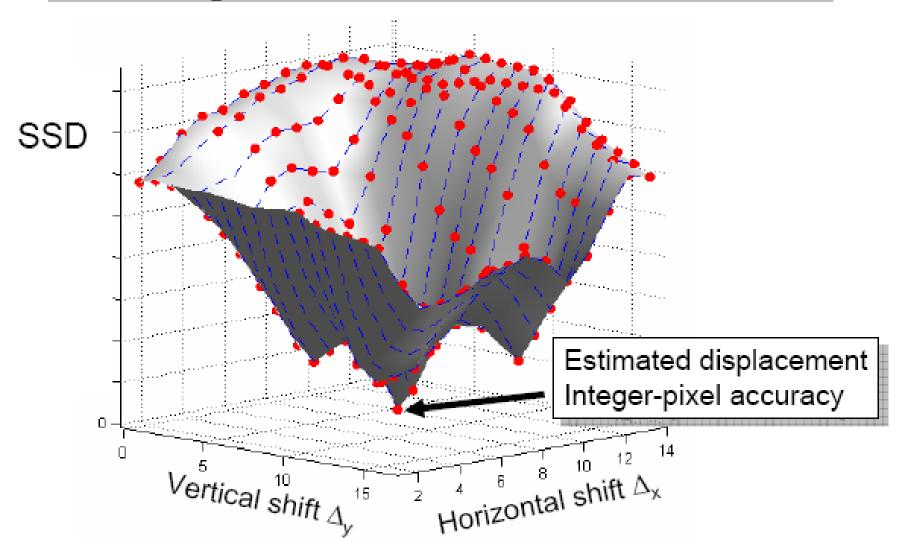
Integer Pixel Shifts



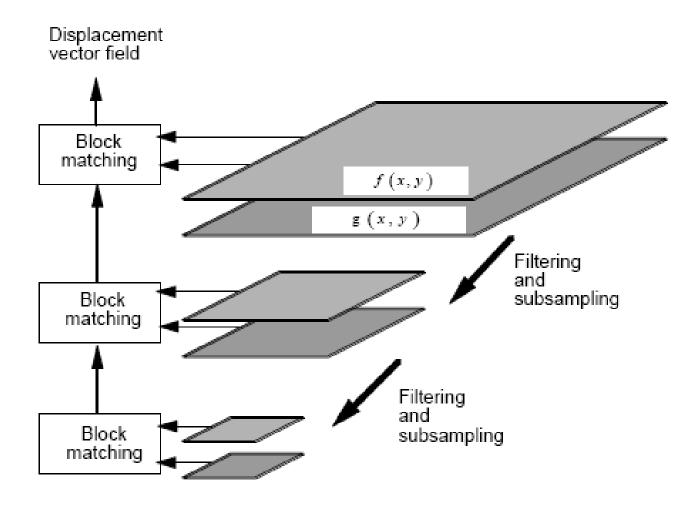
54	53	52	49	31	21	
62	63	59	60	44	33	
120	114	112	111	80	32	
130	128	124	125	88	24	
131	124	127	127	96	42	
77	71	73	75	63	52	

Measurement window is compared with a shifted array of pixels in the other image, to determine the best match Rectangular array of pixels is selected as a measurement window

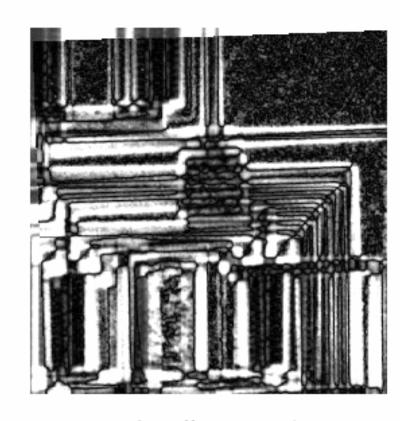
SSD Values Resulting from Block Matching



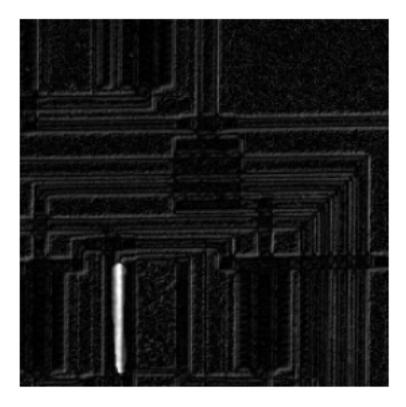
Multi-scale block matching



Absolute difference between images

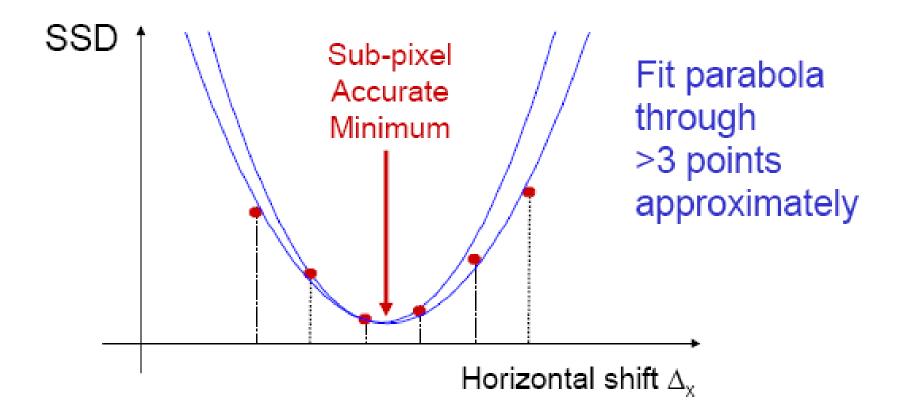


w/o alignment



w/ integer-pixel alignment

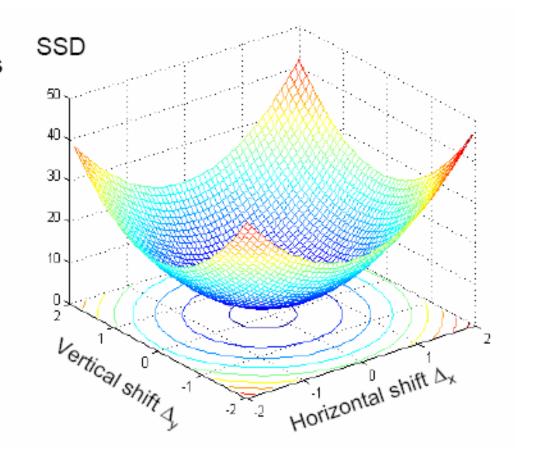
Interpolation of the SSD Minimum



2-d Interpolation of SSD Minimum

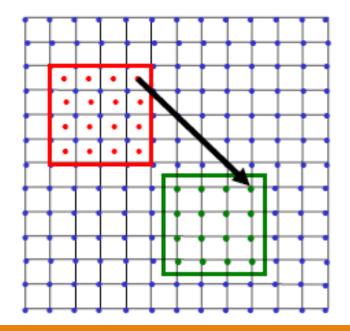
Paraboloid

- Perfect fit through 6 points
- Approximate fit through >6 points



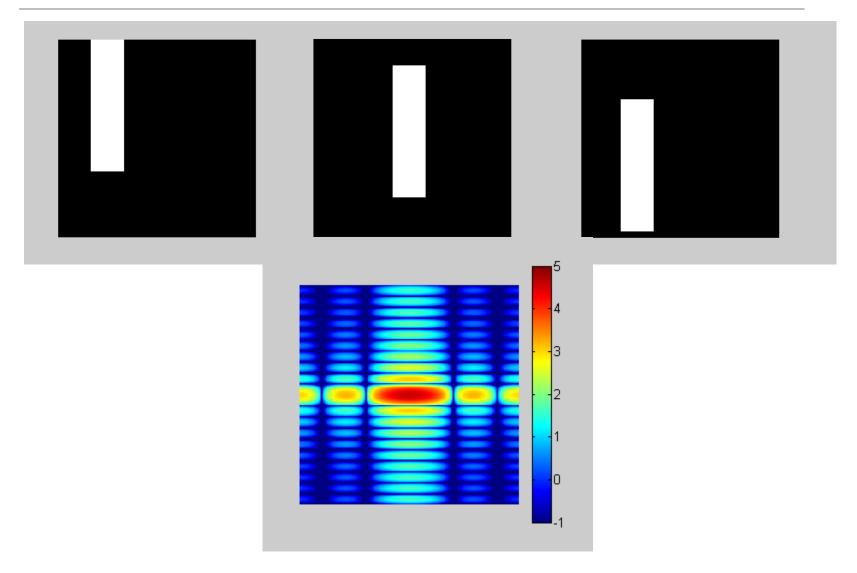
Sub-pixel accuracy

- Interpolate pixel raster of the reference image to desired sub-pixel accuracy (typically by bi-linear interpolation)
- Straightforward extension of displacement vector search to fractional accuracy
- Example: half-pixel accurate displacements

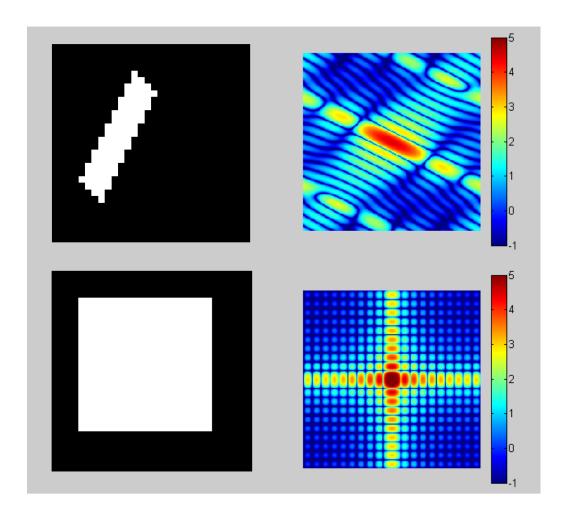


$$\begin{pmatrix} \Delta_x \\ \Delta_y \end{pmatrix} = \begin{pmatrix} 4.5 \\ 4.5 \end{pmatrix}$$

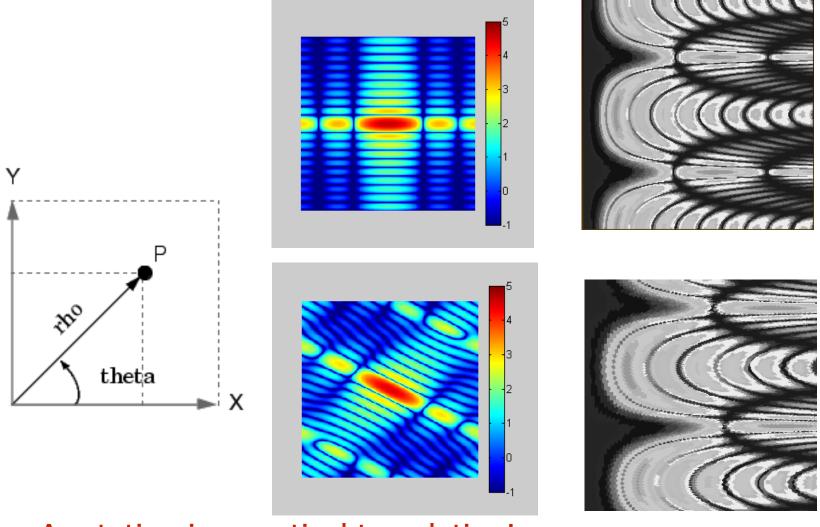
Fourier Transform



Rotation and Scale effects



Polar transform



A rotation is a vertical translation!

Log-Polar Transform

Expansion: $f(t) \rightarrow f(at)$

Using logarithmic scale:

$$f(\log(t)) \to f(\log(a) + \log(t))$$

A scale variation corresponds to a horizontal translation

Translation, rotation and scaling invariance

Translation invariance can then be obtained through a first 2D Fourier transform and disregarding the phase.

A further transform of the previous Fourier Amplitude in log-polar coordinates, where rotations and scaling become translations, is then applied.

A second 2D Fourier Transform is then applied and phase is again disregarded.

The final amplitude of the second 2D Fourier Transform is then invariable to translation, scaling and rotation.

Moments for pattern recognition

Geometric Moments

Let I(x, y) be a continuous image function. Its geometric moment of order p + q is defined as

$$m_{pq} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^p y^q I(x, y) \, dx \, dy$$

Moments

combinations of normalized versions of the moments. Specifically, our goal will be to define moments that are invariant to:

Translations:

$$x' = x + a, \quad y' = y + b$$

Scaling:

$$x' = \alpha x, \quad y' = \alpha y$$

Rotations:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Central Moments

Central moments:

$$\mu_{pq} = \int \int I(x, y)(x - \bar{x})^p (y - \bar{y})^q dx dy$$

where

$$\bar{x} = \frac{m_{10}}{m_{00}}, \quad \bar{y} = \frac{m_{01}}{m_{00}}$$

Central moments are invariant to translations.

Normalized central moments:

$$\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}^{\gamma}}, \quad \gamma = \frac{p+q+2}{2}$$

These are easily shown to be invariant to both translation and scaling

Hu's seven moments

The seven moments of Hu: Hu [Hu 62] has defined a set of seven moments that are invariant under the actions of translation, scaling, and rotation. These are

$$p + q = 2$$

$$\phi_{1} = \eta_{20} + \eta_{02}$$

$$\phi_{2} = (\eta_{20} - \eta_{02})^{2} + 4\eta_{11}^{2}$$

$$p + q = 3$$

$$\phi_{3} = (\eta_{30} - 3\eta_{12})^{2} + (\eta_{03} - 3\eta_{21})^{2}$$

$$\phi_{4} = (\eta_{30} + \eta_{12})^{2} + (\eta_{03} + \eta_{21})^{2}$$

$$\phi_{5} = (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^{2} - 3(\eta_{21} + \eta_{03})^{2}]$$

$$+ (\eta_{03} - 3\eta_{21})(\eta_{03} + \eta_{21})[(\eta_{03} + \eta_{21})^{2} - 3(\eta_{12} + \eta_{30})^{2}]$$

$$\phi_{6} = (\eta_{20} - \eta_{02})[(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}]$$

$$+ 4\eta_{11}(\eta_{30} + \eta_{12})(\eta_{03} + \eta_{21})$$

$$\phi_{7} = (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^{2} - 3(\eta_{21} + \eta_{03})^{2}]$$

$$+ (\eta_{30} - 3\eta_{12})(\eta_{21} + \eta_{03})[(\eta_{03} + \eta_{21})^{2} - 3(\eta_{30} + \eta_{12})^{2}]$$

Discretization

For a digital image I(i, j), with $i = 0, 1, ..., N_x - 1, j = 0, 1, ..., N_y - 1$, the preceding moments can be *approximated* by replacing integrals by summations,

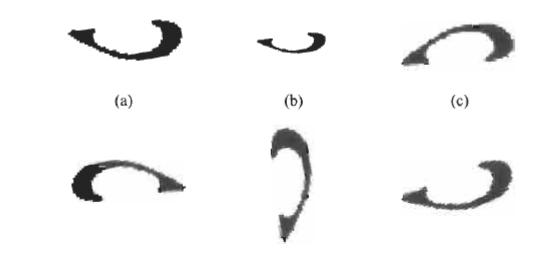
$$m_{pq} = \sum_{i} \sum_{j} I(i,j)i^{p}j^{q}$$
(7.24)

In order to keep the dynamic range of the moment values consistent for an element sized images, a normalization of the x - y axis can be performed, prior to the computation of the moments. The moments are then approximated by

$$m_{pq} = \sum_{i} I(x_i, y_i) x_i^p y_i^q$$

where the sum is over all image pixels. Then x_i , y_i are the coordinates of the center point of the *i*th pixel and are no longer integers but real numbers in the interval $x_i \in [-1, +1]$, $y_i \in [-1, +1]$. For digital images, the invariance properties of the moments we have defined are only approximately true.

The Byzantine symbol "petasti"



Moments	0°	Scaled	180°	15°	Mirror	90°
ϕ_1	93.13	91.76	93.13	94.28	93.13	93.13
ϕ_2	58.13	56.60	58.13	58.59	58.13	58.13
ϕ_3	26.70	25.06	26.70	27.00	26.70	26.70
ϕ_4	15.92	14.78	15.92	15.83	15.92	15.92
ϕ_5	3.24	2.80	3.24	3.22	3.24	3.24
ϕ_6	10.70	9.71	10.70	10.57	10.70	10.70
ϕ_7	0.53	0.46	0.53	0.56	-0.53	0.53

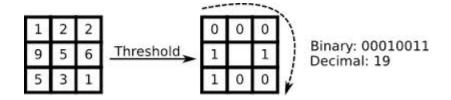
Local Binary Pattern (LBP)

Compare 8-connected neighborhood with center pixel

If pixel > center, replace with '1' else '0'

Construct a binary number by going clockwise

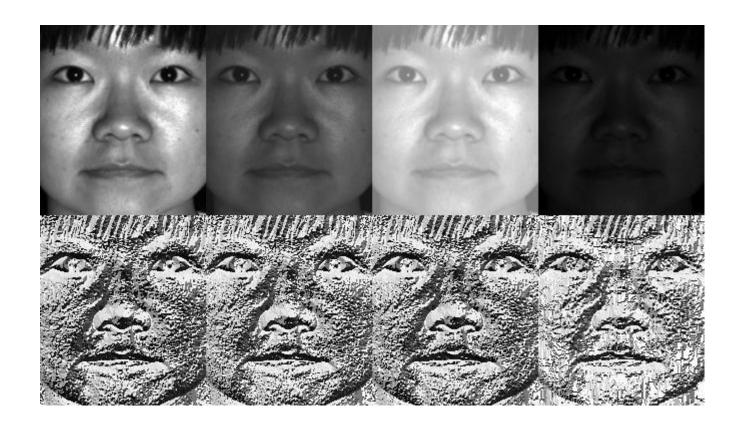
Replace the center pixel with the decimal value of the binary number



Binary number is sensitive to starting point – LBP is not rotation invariant Rotate binary string to minimize decimal value for rotation invariance Minor changes in illumination can change the decimal value Partition image into cells and construct LBP histograms in each cell

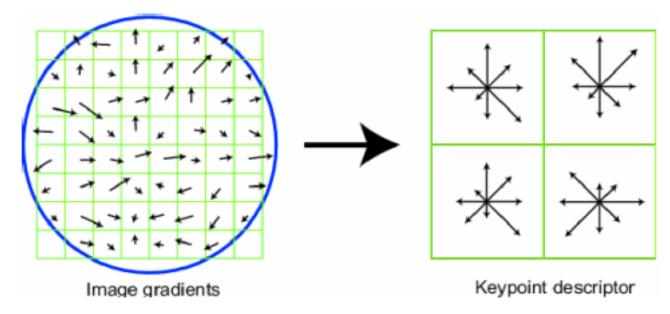
LBP Example from OpenCV

Notice how LBP feature are illumination invariant



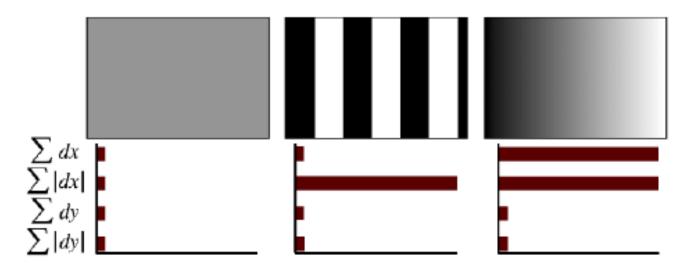
SIFT descriptors

- SIFT Scale-Invariant Feature Transform [Brown, Lowe, 2002]
- Sample thresholded image gradients at 16x16 locations in scale space (in local coordinate system for rotation and scale invariance)
- Generate 4x4 orientation histograms with 8 directions each; each observation weighted with magnitude of image gradient and window function
- 128-dimensional feature vector



SURF descriptors

- SURF Speeded Up Robust Features [Bay et al. 2006]
- Compute horizontal and vertical pixel differences, dx, dy
 (in local coordinate system for rotation and scale invariance, window size 20σ x 20σ, where σ² is feature scale)
- Accumulate dx, dy, and |dx|, |dy| over 4x4 subregions (SURF-64) or 3x3 subregions (SURF-36)
- Normalize vector for gain invariance, but distinguish bright blobs and dark blobs based on sign of Laplacian (trace of Hessian)



Affine parameters from feature correspondences

Given: feature correspondences

$$(x_i', y_i') \leftrightarrow (x_i, y_i)$$
 $i = 1, ..., N$

■ Set up 2N linear equations with 6 unknowns $a_{00}, a_{01}, a_{02}, a_{10}, a_{11}, a_{12}$

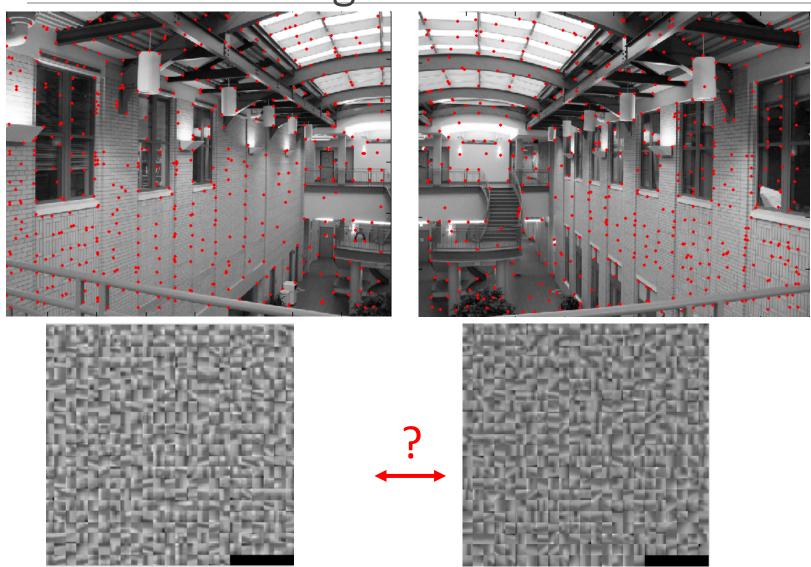
$$\mathbf{x}_i' = \begin{bmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \end{bmatrix} \underline{\mathbf{x}}_i$$

- Solve by least mean squares (or least median of squares)
- Easily extended to higher-order linear warping model, e.g.,

$$x'_{i} = a_{1} + a_{2}x_{i} + a_{3}y_{i} + a_{4}x_{i}^{2} + a_{5}y_{i}^{2} + a_{6}x_{i}y_{i}$$

$$y'_{i} = b_{1} + b_{2}x_{i} + b_{3}y_{i} + b_{4}x_{i}^{2} + b_{5}y_{i}^{2} + b_{6}x_{i}y_{i}$$

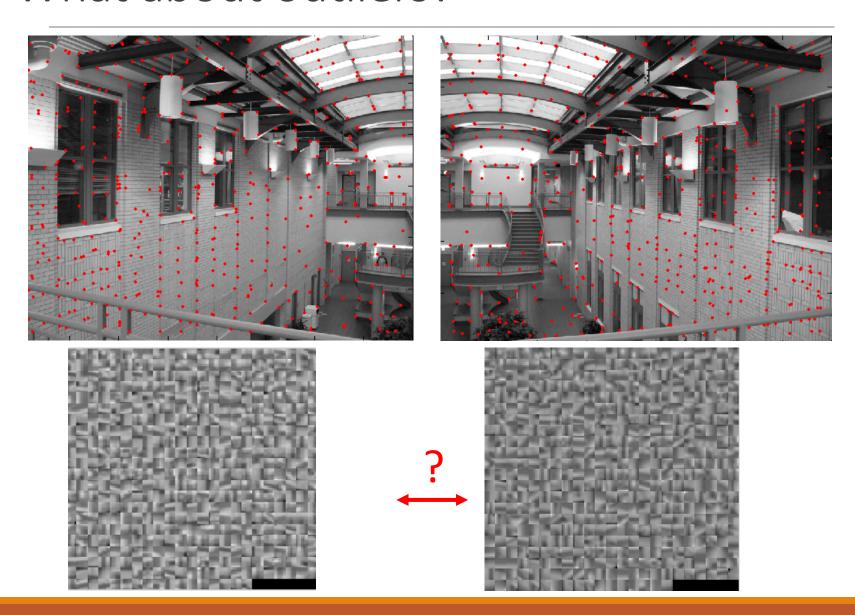
Feature matching



Feature matching

- Exhaustive search
 - for each feature in one image, look at all the other features in the other image(s)
- Hashing
 - compute a short descriptor from each feature vector, or hash longer descriptors (randomly)
- Nearest neighbor techniques
 - *k*-trees and their variants

What about outliers?

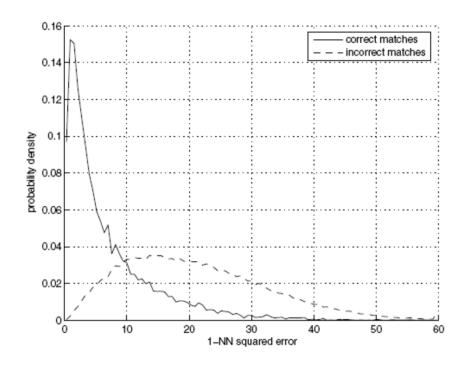


Feature-space outlier rejection

Let's not match all features, but only these that have "similar enough" matches?

How can we do it?

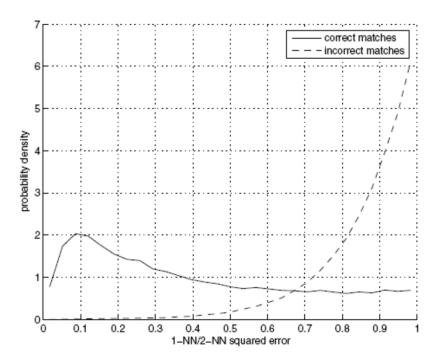
- SSD(patch1,patch2) < threshold
- How to set threshold?



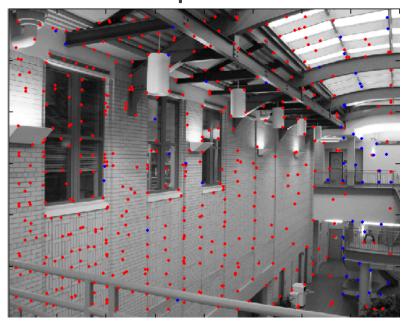
Feature-space outlier rejection

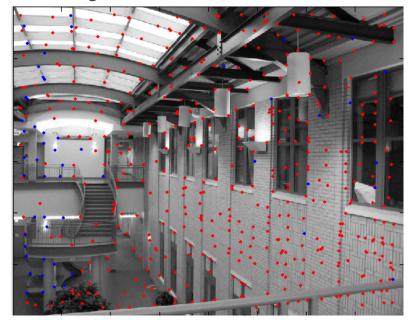
A better way [Lowe, 1999]:

- 1-NN: SSD of the closest match
- 2-NN: SSD of the <u>second-closest</u> match
- Look at how much better 1-NN is than 2-NN, e.g. 1-NN/2-NN
- That is, is our best match so much better than the rest?



Feature-space outliner rejection

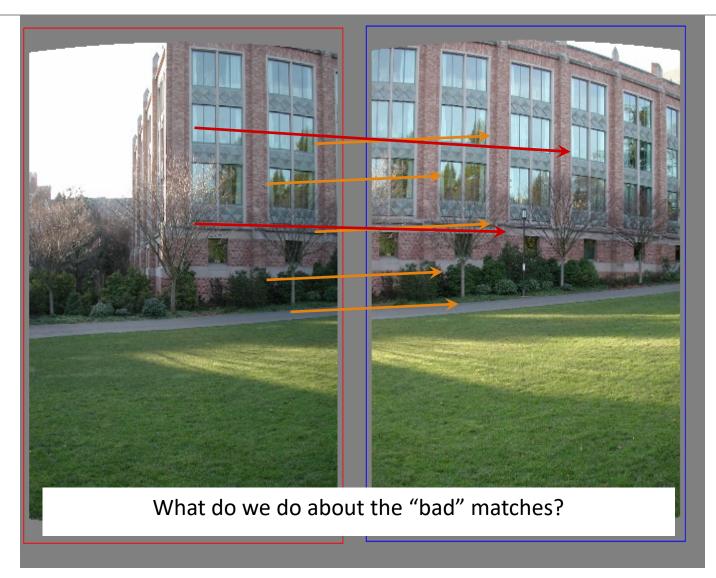




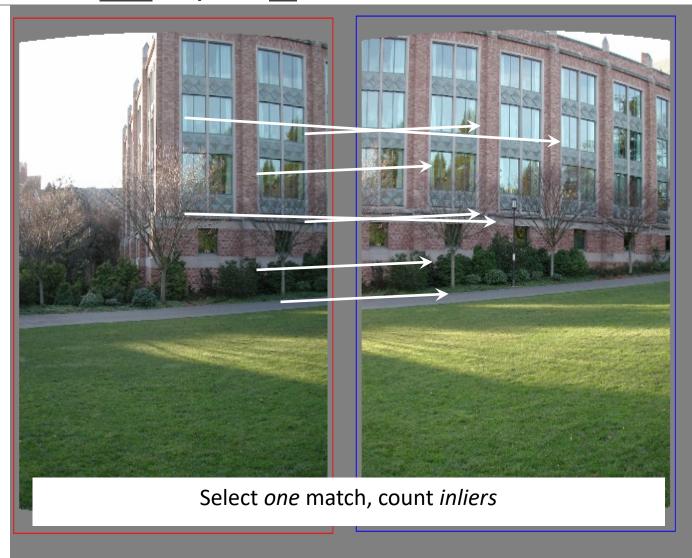
Can we now compute H from the blue points?

- No! Still too many outliers...
- What can we do?

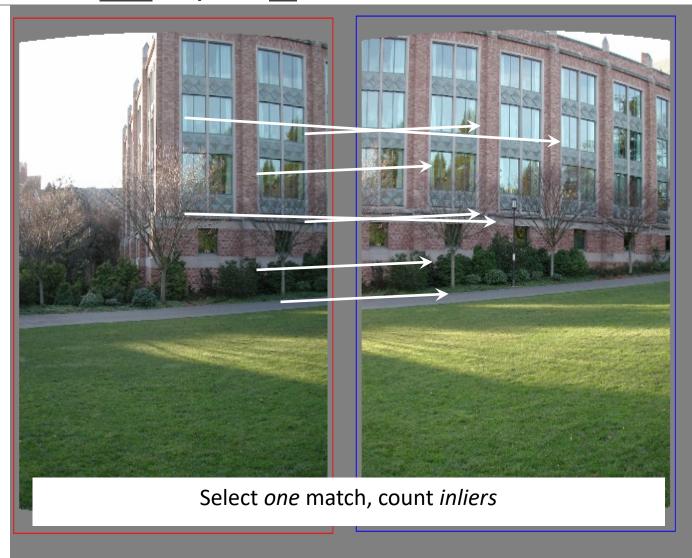
Matching features



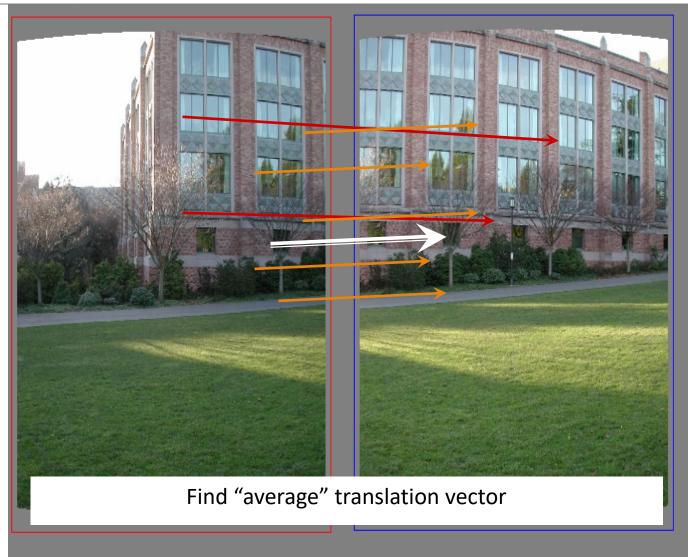
RAndom SAmple Consensus



RAndom SAmple Consensus



Least squares fit

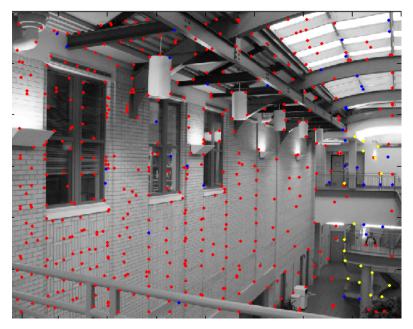


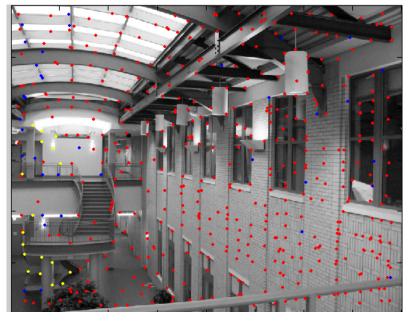
RANSAC for estimating homography

RANSAC loop:

- 1. Select four feature pairs (at random)
- Compute homography H (exact)
- 3. Compute *inliers* where $SSD(p_i', \mathbf{H} p_i) < \varepsilon$
- 4. Keep largest set of inliers
- 5. Re-compute least-squares H estimate on all of the inliers

RANSAC





Example: Recognising Panoramas

M. BROWN AND D. LOWE,
UNIVERSITY OF BRITISH COLUMBIA

1D Rotations (θ)

Ordering ⇒ matching images

1D Rotations (θ)

 \circ Ordering \Longrightarrow matching images

1D Rotations (θ)

 \circ Ordering \Longrightarrow matching images

1D Rotations (θ)

 \circ Ordering \Rightarrow matching images

- 2D Rotations (θ, φ)
 - Ordering ⇒ matching images

1D Rotations (θ)

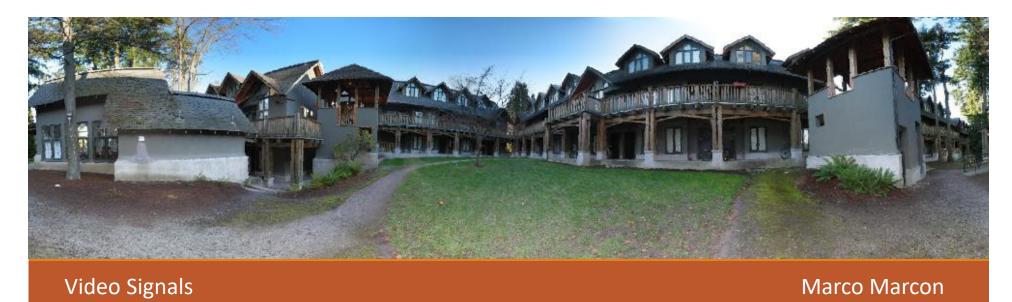
Ordering ⇒ matching images

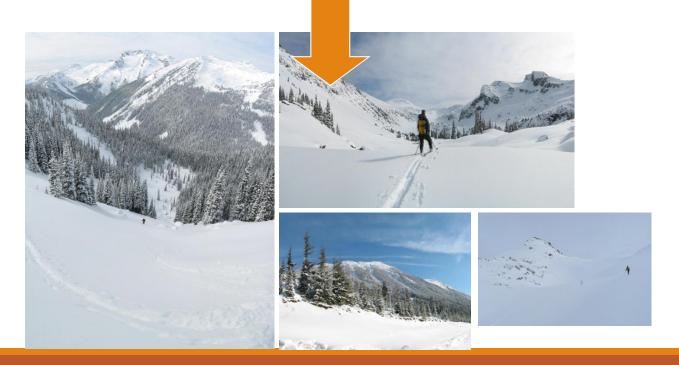
- 2D Rotations (θ, ϕ)
 - Ordering ⇒ matching images

1D Rotations (θ)

Ordering ⇒ matching images

- 2D Rotations (θ, φ)
 - Ordering \Rightarrow matching images





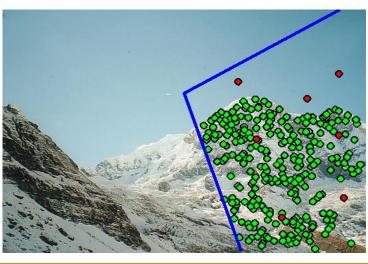
RANSAC for Homography

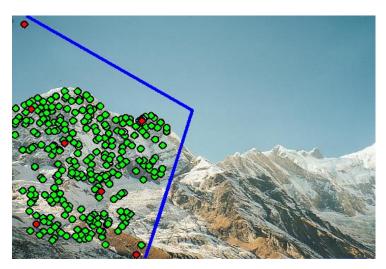


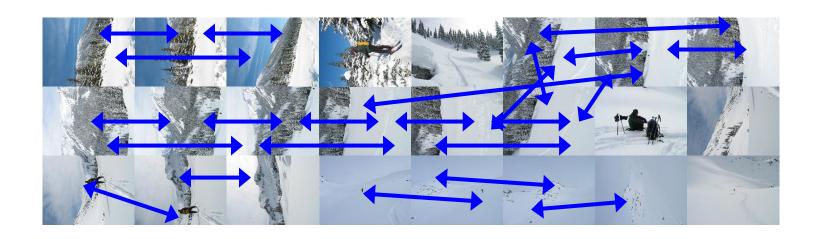
RANSAC for Homography

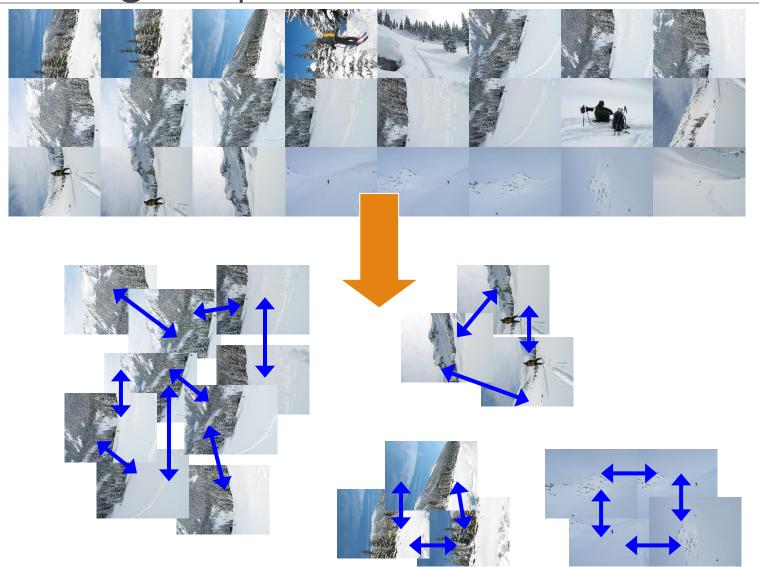
RANSAC for Homography

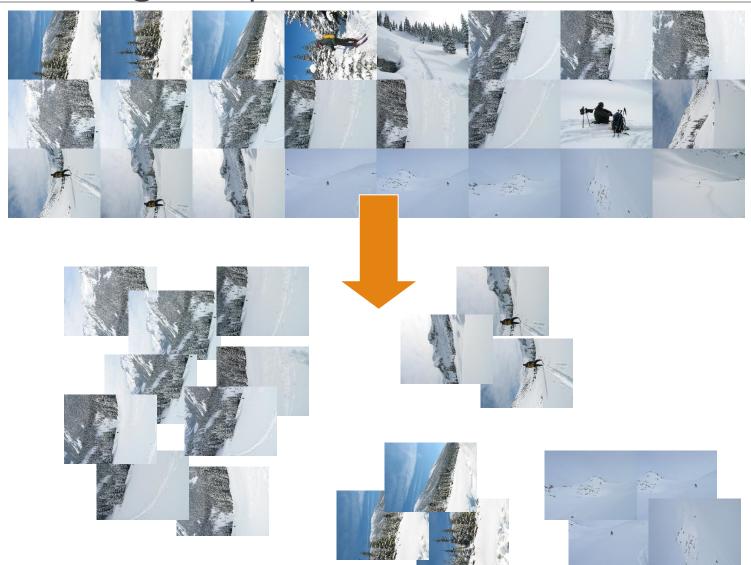
Probabilistic model for verification

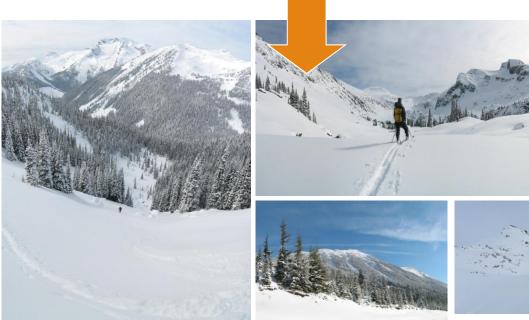












Homography for Rotation

Parameterise each camera by rotation and focal length

$$\mathbf{R}_i = e^{[\boldsymbol{ heta}_i]_{ imes}}$$
, $[\boldsymbol{ heta}_i]_{ imes} = egin{bmatrix} 0 & - heta_{i3} & heta_{i2} \ heta_{i3} & 0 & - heta_{i1} \ - heta_{i2} & heta_{i1} & 0 \end{bmatrix}$

$$\mathbf{K}_i = egin{bmatrix} f_i & 0 & 0 \ 0 & f_i & 0 \ 0 & 0 & 1 \end{bmatrix}$$

This gives pairwise homographies

$$\tilde{\mathbf{u}}_i = \mathbf{H}_{ij} \tilde{\mathbf{u}}_j$$
, $\mathbf{H}_{ij} = \mathbf{K}_i \mathbf{R}_i \mathbf{R}_j^T \mathbf{K}_j^{-1}$

Bundle Adjustment

New images initialized with rotation, focal length of best matching image

Bundle Adjustment

New images initialized with rotation, focal length of best matching image

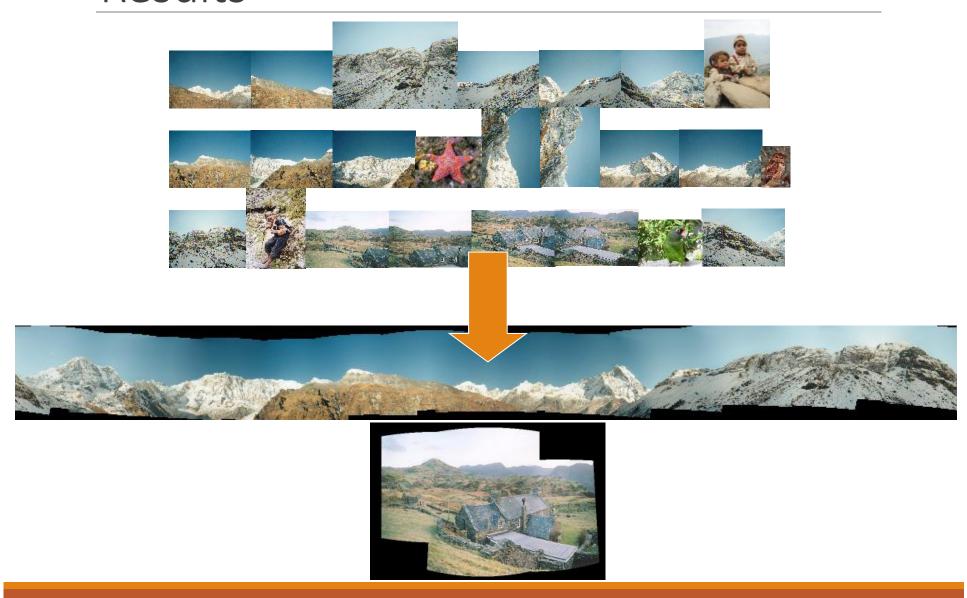


Multi-band Blending

Burt & Adelson 1983

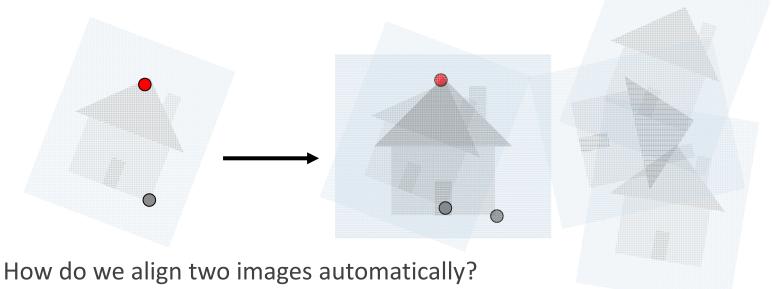
• Blend frequency bands over range $\propto \lambda$

Results



OPTICAL FLOW

Image Alignment



Two broad approaches:

- Feature-based alignment
 - Find a few matching features in both images
 - compute alignment
- Direct (pixel-based) alignment
 - Search for alignment where most pixels agree

Direct Alignment

The simplest approach is a brute force search (hw1)

- Need to define image matching function
 - SSD, Normalized Correlation, edge matching, etc.
- Search over all parameters within a reasonable range:

```
e.g. for translation:
for tx=x0:step:x1,
  for ty=y0:step:y1,
     compare image1(x,y) to image2(x+tx,y+ty)
  end;
end;
```

Need to pick correct x0, x1 and step

• What happens if step is too large?

Direct Alignment (brute force)

What if we want to search for more complicated transformation, e.g. homography?

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Problems with brute force

Not realistic

- Search in O(N⁸) is problematic
- Not clear how to set starting/stopping value and step

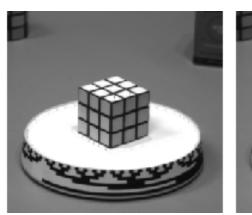
What can we do?

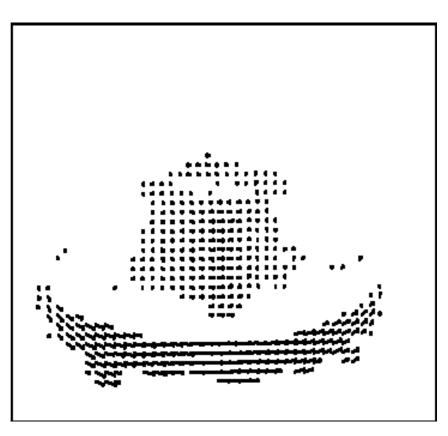
- Use pyramid search to limit starting/stopping/step values
- For special cases (rotational panoramas), can reduce search slightly to O(N⁴):
 - $H = K_1 R_1 R_2^{-1} K_2^{-1}$ (4 DOF: f and rotation)

Alternative: gradient decent on the error function

- i.e. how do I tweak my current estimate to make the SSD error go down?
- Can do sub-pixel accuracy
- BIG assumption?
 - Images are already almost aligned (<2 pixels difference!)
 - Can improve with pyramid
- Same tool as in motion estimation

Motion estimation: Optical flow





Will start by estimating motion of each pixel separately Then will consider motion of entire image

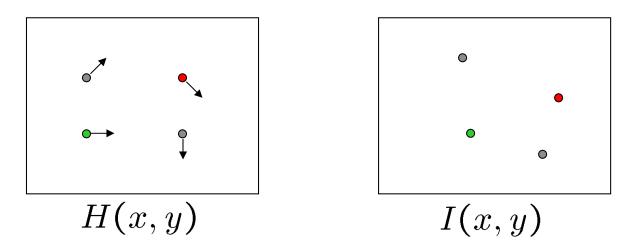
Why estimate motion?

Lots of uses

- Track object behavior
- Correct for camera jitter (stabilization)
- Align images (mosaics)
- 3D shape reconstruction
- Special effects



Problem definition: optical flow



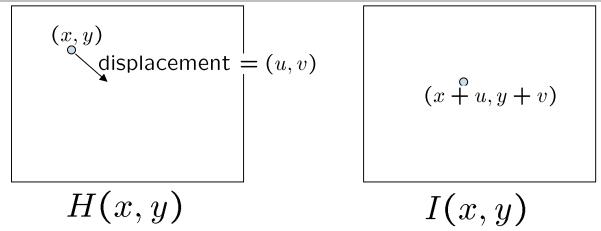
How to estimate pixel motion from image H to image I?

Key assumptions

- color constancy: a point in H looks the same in I
 - For grayscale images, this is brightness constancy
- small motion: points do not move very far

This is called the optical flow problem

Optical flow constraints (grayscale images)



Let's look at these constraints more closely

- brightness constancy: Q: what's the equation?
 H(x,y)=I(x+u, y+v)
- small motion: (u and v are less than 1 pixel)
 - suppose we take the Taylor series expansion of I:

$$\begin{split} I(x+u,y+v) &= I(x,y) + \tfrac{\partial I}{\partial x} u + \tfrac{\partial I}{\partial y} v + \text{higher order terms} \\ &\approx I(x,y) + \tfrac{\partial I}{\partial x} u + \tfrac{\partial I}{\partial y} v \end{split}$$

Optical flow equation

Combining these two equations

$$0 = I(x + u, y + v) - H(x, y) \quad \text{shorthand:} \quad I_x = \frac{\partial I}{\partial x}$$

$$\approx I(x, y) + I_x u + I_y v - H(x, y)$$

$$\approx (I(x, y) - H(x, y)) + I_x u + I_y v$$

$$\approx I_t + I_x u + I_y v$$

$$\approx I_t + \nabla I \cdot [u \ v]$$

In the limit as u and v go to zero, this becomes exact

$$0 = I_t + \nabla I \cdot \left[\frac{\partial x}{\partial t} \, \frac{\partial y}{\partial t} \right]$$

Optical flow equation

$$0 = I_t + \nabla I \cdot [u \ v]$$

Q: how many unknowns and equations per pixel?

2 unknowns, one equation

Intuitively, what does this constraint mean?

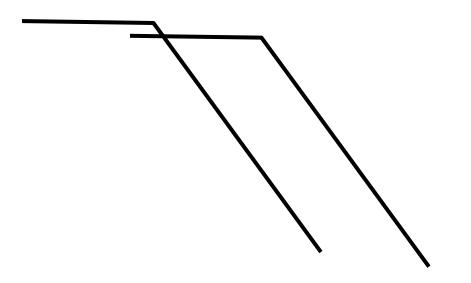
- The component of the flow in the gradient direction is determined
- The component of the flow parallel to an edge is unknown

This explains the Barber Pole illusion

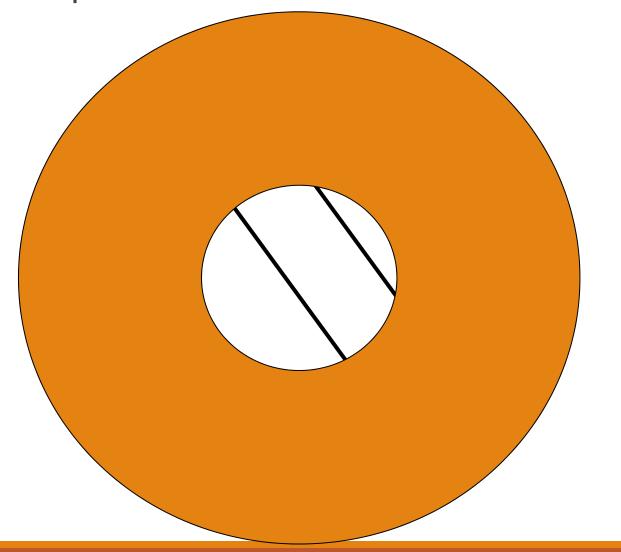
http://www.sandlotscience.com/Ambiguous/Barberpole Illusion.htm

http://en.wikipedia.org/wiki/Barber's pole

Aperture problem



Aperture problem



Solving the aperture problem

How to get more equations for a pixel?

- Basic idea: impose additional constraints
 - most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel's neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25 equations per pixel!

$$0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$$

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

$$A \qquad d \qquad b$$

$$25 \times 2 \qquad 2 \times 1 \qquad 25 \times 1$$

RGB version

How to get more equations for a pixel?

- Basic idea: impose additional constraints
 - most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel's neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25*3 equations per pixel!

Note that RGB is not enough to disambiguate

$$0 = I_{t}(\mathbf{p_{i}})[0, 1, 2] + \nabla I(\mathbf{p_{i}})[0, 1, 2] \cdot [u \ v]$$

$$\begin{bmatrix} I_{x}(\mathbf{p_{1}})[0] & I_{y}(\mathbf{p_{1}})[0] \\ I_{x}(\mathbf{p_{1}})[1] & I_{y}(\mathbf{p_{1}})[1] \\ I_{x}(\mathbf{p_{1}})[2] & I_{y}(\mathbf{p_{1}})[2] \\ \vdots & \vdots & \vdots \\ I_{x}(\mathbf{p_{25}})[0] & I_{y}(\mathbf{p_{25}})[0] \\ I_{x}(\mathbf{p_{25}})[1] & I_{y}(\mathbf{p_{25}})[1] \\ I_{x}(\mathbf{p_{25}})[2] & I_{y}(\mathbf{p_{25}})[2] \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_{t}(\mathbf{p_{1}})[0] \\ I_{t}(\mathbf{p_{1}})[1] \\ I_{t}(\mathbf{p_{1}})[2] \\ \vdots \\ I_{t}(\mathbf{p_{25}})[0] \\ I_{t}(\mathbf{p_{25}})[1] \\ I_{t}(\mathbf{p_{25}})[2] \end{bmatrix}$$

$$A \qquad d \qquad b \\ 75 \times 2 \qquad 2 \times 1 \qquad 75 \times 1$$

because R, G & B are correlated

Lukas-Kanade flow

Prob: we have more equations than unknowns

Solution: solve least squares problem

minimum least squares solution given by solution (in d) of:

$$(A^{T}A) d = A^{T}b$$

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$

$$A^T A \qquad A^T b$$

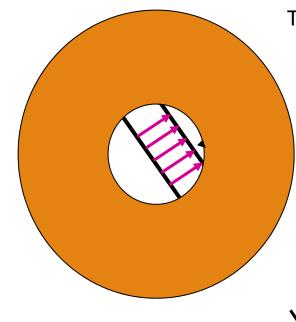
- The summations are over all pixels in the K x K window
- This technique was first proposed by Lukas & Kanade (1981)

 Video Signals

 Marco Marcon

 Marc

Aperture Problem and Normal Flow



The gradient constraint:

$$\begin{vmatrix} I_x u + I_y v + I_t = 0 \\ \nabla I \bullet \vec{U} = 0 \end{vmatrix}$$

$$\nabla I \bullet \vec{U} = 0$$

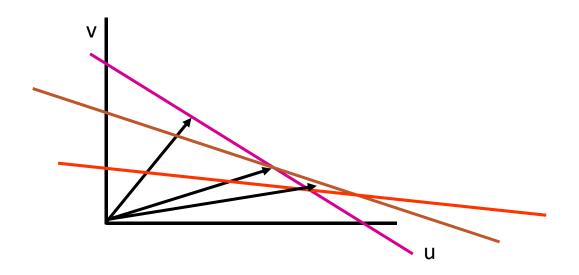
Defines a line in the (u,v) space

Normal Flow:

$$u_{\perp} = -\frac{I_{t}}{|\nabla I|} \frac{\nabla I_{-}}{|\nabla I|}$$

u

Combining Local Constraints



$$abla I^1 ullet U = -I_t^1$$
 $abla I^2 ullet U = -I_t^2$
 $abla I^3 ullet U = -I_t^3$
etc.

Conditions for solvability

Optimal (u, v) satisfies Lucas-Kanade equation

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$

$$A^T A \qquad A^T b$$

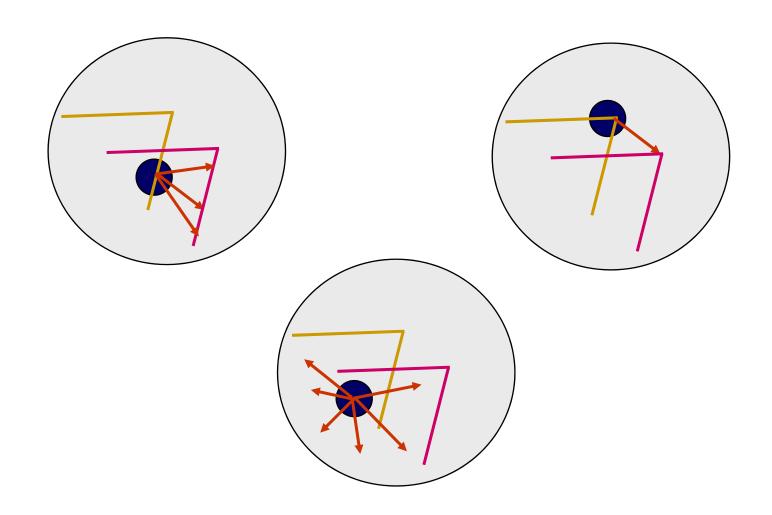
When is This Solvable?

- A^TA should be invertible
- A^TA should not be too small due to noise
 - eigenvalues λ_1 and λ_2 of A^TA should not be too small
- A^TA should be well-conditioned
 - $-\lambda_1/\lambda_2$ should not be too large (λ_1 = larger eigenvalue)

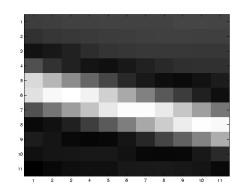
A^TA is solvable when there is no aperture problem

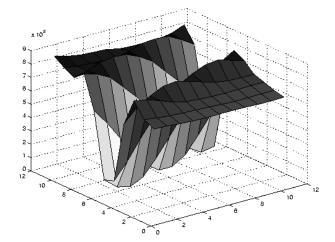
$$A^{T}A = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix} = \sum \begin{bmatrix} I_{x} \\ I_{y} \end{bmatrix} [I_{x} \ I_{y}] = \sum \nabla I(\nabla I)^{T}$$
 arcon

Local Patch Analysis



Edge

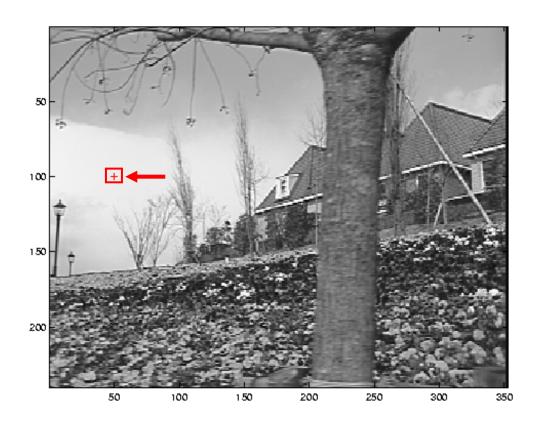


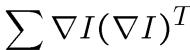




– large λ_1 , small λ_2

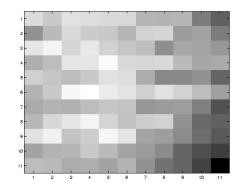
Low texture region





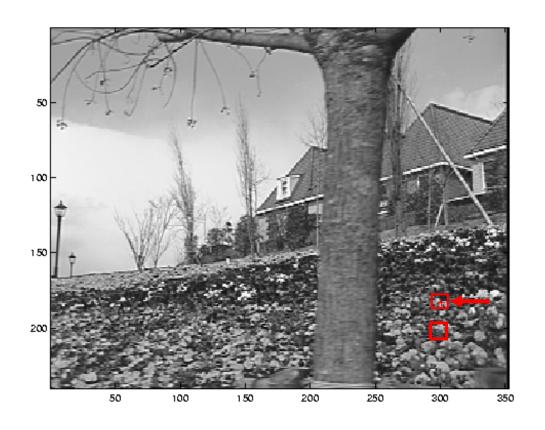
 $\sum_{-\text{gradients have small magnitude}}^{T} \nabla I(\nabla I)^T$

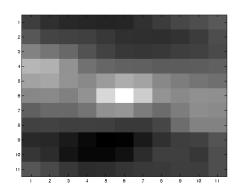
– small λ_1 , small λ_2

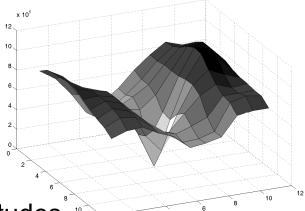


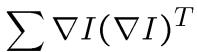


High textured region









 $\sum \nabla I(\nabla I)^T$ – gradients are different, large magnitudes in

– large λ_1 , large λ_2

Observation

This is a two image problem BUT

- Can measure sensitivity by just looking at one of the images!
- This tells us which pixels are easy to track, which are hard
 - very useful later on when we do feature tracking...

Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?

- Suppose A^TA is easily invertible
- Suppose there is not much noise in the image

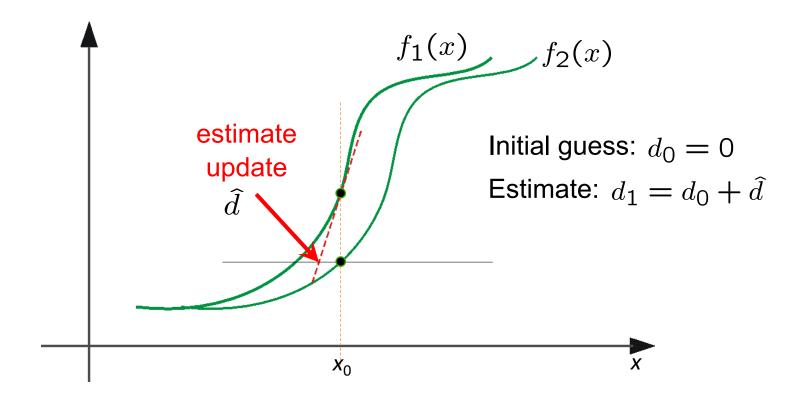
When our assumptions are violated

- Brightness constancy is not satisfied
- The motion is not small
- A point does not move like its neighbors
 - window size is too large
 - what is the ideal window size?

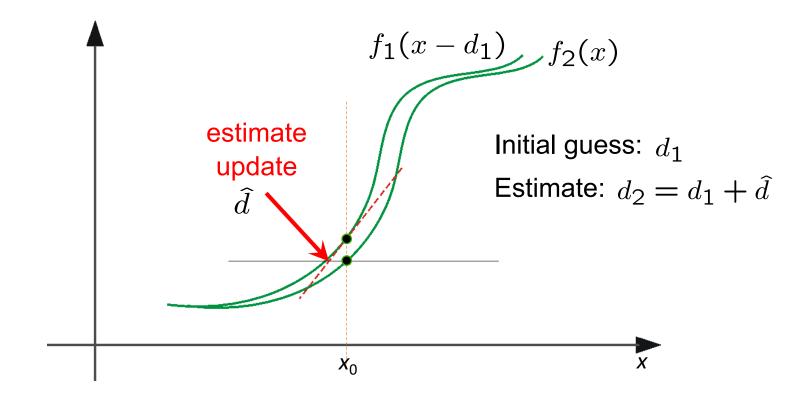
Iterative Refinement

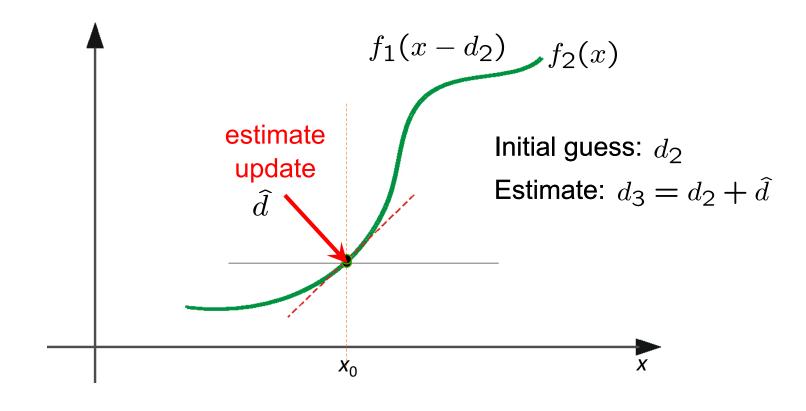
Iterative Lukas-Kanade Algorithm

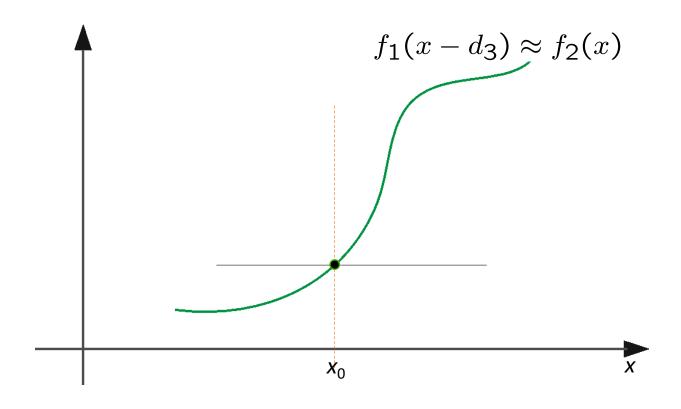
- 1. Estimate velocity at each pixel by solving Lucas-Kanade equations
- 2. Warp H towards I using the estimated flow field
 - use image warping techniques
- 3. Repeat until convergence



(using *d* for *displacement* here instead of *u*)







Some Implementation Issues:

- Warping is not easy (ensure that errors in warping are smaller than the estimate refinement)
- Warp one image, take derivatives of the other so you don't need to re-compute the gradient after each iteration.
- Often useful to low-pass filter the images before motion estimation (for better derivative estimation, and linear approximations to image intensity)

Revisiting the small motion assumption

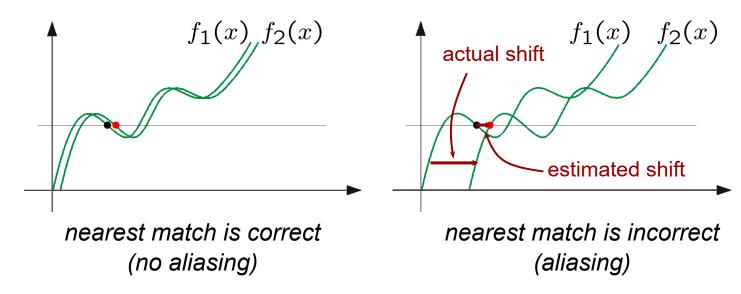
Is this motion small enough?

- Probably not—it's much larger than one pixel (2nd order terms dominate)
- How might we solve this problem?

Optical Flow: Aliasing

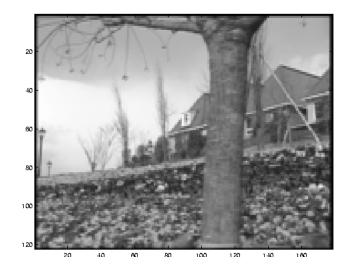
Temporal aliasing causes ambiguities in optical flow because images can have many pixels with the same intensity.

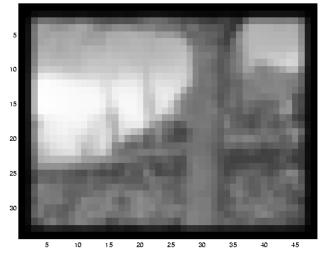
I.e., how do we know which 'correspondence' is correct?

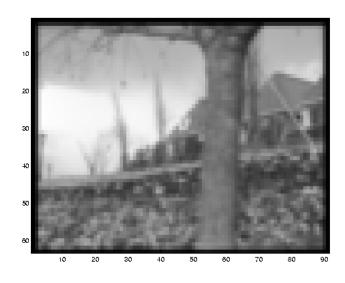


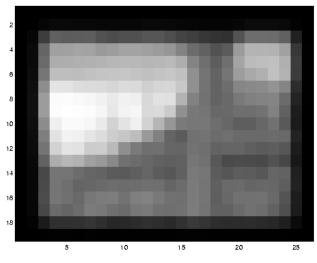
To overcome aliasing: coarse-to-fine estimation.

Reduce the resolution!

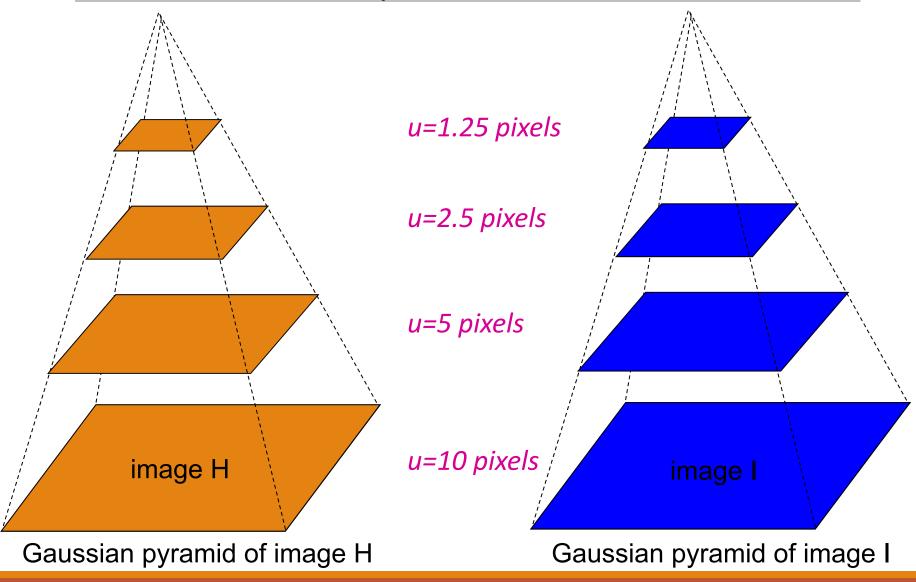




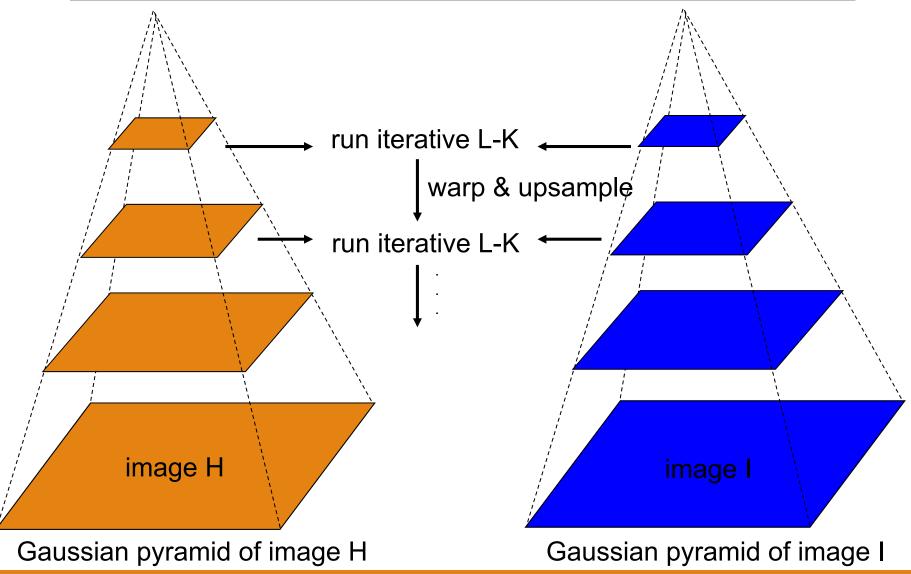




Coarse-to-fine optical flow estimation



Coarse-to-fine optical flow estimation



Beyond Translation

So far, our patch can only translate in (u,v)

What about other motion models?

rotation, affine, perspective

Same thing but need to S and appropriate Jacobian See Szeliski's survey of Panorama stitching

Recap: Classes of Techniques

Feature-based methods (e.g. SIFT+Ransac+regression)

- Extract visual features (corners, textured areas) and track them over multiple frames
- Sparse motion fields, but possibly robust tracking
- Suitable especially when image motion is large (10-s of pixels)

Direct-methods (e.g. optical flow)

- Directly recover image motion from spatio-temporal image brightness variations
- Global motion parameters directly recovered without an intermediate feature motion calculation
- Dense motion fields, but more sensitive to appearance variations
- Suitable for video and when image motion is small (< 10 pixels)

Block-based motion prediction

Break image up into square blocks

Estimate translation for each block

Use this to predict next frame, code difference (MPEG-2)

