Video Signals

COLORIMETRY

Video Signals

The Electromagnetic spectrum

Video Signals

Spectral examples

The light emitted from a Laser is strictly monochromatic and its spectrum is made from a single line where all the energy is concentrated.

Video Signals

Spectral examples

The light emitted from the 3 different phosphors of a traditional color Cathode Ray Tube (CRT)

The light emitted from a gas vapour lamp is a set of diffent spectral lines. Their value is linked to the allowed energy steps performed by the excited gas electrons.

Video Signals

Spectral examples

Many objects, when heated, emit light with a spectral distribution close to the "Black body" radiation. It follows the Planck law and its shape depends only on the absolute object temperature.

Examples:

- the stars,
- the sun.
- incandenscent

lamps

The "Black body" law

Planck's law states that:

$$I(\nu,T)d\nu = \left(\frac{2h\nu^3}{c^2}\right)\frac{1}{e^{\frac{h\nu}{kT}} - 1}d\nu$$

where:

I(v,T) dv is the amount of energy per unit surface area per unit time per unit solid angle emitted in the frequency range between v and v + dv by a black body at temperature T;

h is the Planck constant;

c is the speed of light in a vacuum;

k is the Boltzmann constant;

v is frequency of electromagnetic radiation;

T is the temperature in Kelvin.

Video Signals

The "white" light

An ideal illuminant with flat spectrum is not realizable.

The sun can be assumed as a Planck source a 6000K

Incandescent lamps can be assumed as planck sources ranging from 2000K to 5000K

A detailed description of the power spectrum where providing power density at each frequency.

30 values to specify energy in every sub-band (of 10 nm) in the visible range (from 400 to 700 nm) \Diamond

Following the trichromatic description

- Lightness
- Hue
- Saturation

The human eye sensibility

Concerning the daylight visual system, the la retina can be assumed as composed of 3 different cones(α , β , γ), with different, but partially overlapped, spectral sensitivity.

Video Signals

Additive synthesis

A certain color can be though as a weighted sum of 3 primary colors Red ->R; Green ->G; Blu ->B

A "normalized" white can be described as: White= $1 \cdot R + 1 \cdot G + 1 \cdot B$

Subtractive synthesis

In order to obtain a specific color three filters with different weights are applied to white light. They will absorb different spectral parts of the white color. Cyan ->C; Yellow ->Y; Magenta ->M;

Comparison between CMY, CMYK, RGB

Video Signals

Additive synthesis: linearity $A_1=d_1\mathbf{R}+e_1\mathbf{G}+f_1\mathbf{B}$ $A_2=d_2\mathbf{R}+e_2\mathbf{G}+f_2\mathbf{B}$ $A_1+A_2=[d_1+d_2]\mathbf{R}+[e_1+e_2]\mathbf{G}+[f_1+f_2]\mathbf{B}$

We can define $P_j(\lambda)$ (j=1,2,3) the spectra of the primary sources. In case of primary sources we will have $P_j(\lambda) = \delta(\lambda - \psi_j)$; we also assume unitary power for each primary source.

$$\int P_j(\lambda) d\lambda = 1$$

Additive synthesis

A color can be defined as: $C(\lambda) = \sum_{j=1}^{3} A_{j}(C)P_{j}(\lambda)$

If we define $V(\lambda)$ as the sensibility of the human eye, the perceived **luminance** for a color is:

$$Y(C) = \int C(\lambda) V(\lambda) \, d\lambda$$

The luminance can also be described in terms of primary sources:

$$Y(C) = \sum_{j=1}^{3} A_j(C) \int P_j(\lambda) V(\lambda) d\lambda$$

In order to define the coefficient of the 3 primary sources for a specific color C (for a set of people)

The first step consists in primary sources calibration in

White
$$=\sum_{j=1}^{3}A_{j}(W)P_{j}(\lambda$$

order to obtain the reference white color. The $A_j(W)$ coefficients indicate the weights for each primary source in order to obtain the *reference white* [which is different from the *absolute white* for that set of sources obtained when all the $A_j(W)$ coefficients are 1]

The CIE Standard Observers

CIE: International Commission on Illumination:

Established in 1931 and based in Vienna, Austria, the **International Commission on Illumination** (usually known as the **CIE** for its French name **Commission internationale de l'éclairage**, but the English abbreviation is sometimes seen in older papers) is the international authority on light, illumination, color, and color spaces.

In the CIE experiment one half of a circular field is illuminated with spectrum color and the other with a mixture of red, green and blue

The observer adjusts the red, green and blue until it matches the spectrum color

The result is a set of color matching functions used to calculate the tristimulus values

Video Signals

The CIE standard device

The tristimulus values of a color are the amounts of three primary colors in a three-component additive color model needed to match that test color.

$$T_{j}(C) = \frac{A_{j}(C)}{A_{j}(W)}$$
 $j = 1,2,3$

When the generated color meets the analyzed color, we can store the 3 values $A_j(C)$ that are the tristimulus values.

$$Y(C) = \int C(\lambda) V(\lambda) d\lambda = \sum_{y=1}^{3} T_j(C) A_j(W) \int P_j(\lambda) V(\lambda) d\lambda$$

Video Signals

 $A_j(C)$ can be calculated from $T_j(C)$ since: $e_1(C) = \int C(\lambda) s_1(\lambda) d\lambda = \int \sum_{j=1}^3 T_j(C) A_j(W) P_j(\lambda) s_1(\lambda) d\lambda$ $e_2(C) = \int C(\lambda) s_2(\lambda) d\lambda = \int \sum_{i=1}^3 T_i(C) A_i(W) P_i(\lambda) s_2(\lambda) d\lambda$ $e_{3}(C) = \int C(\lambda)s_{3}(\lambda)d\lambda = \int \sum_{i}^{3} T_{j}(C)A_{j}(W)P_{j}(\lambda)s_{3}(\lambda)d\lambda$ where $e_i(C)$ are the relative excitations for the observed color while $s_i(\lambda)$ is the i-th cone sensitivity.

Video Signals

Then we can write:

$$e_{1}(C) = \int C(\lambda)s_{1}(\lambda)d\lambda = \sum_{y=1}^{3} T_{j}(C)A_{j}(W)\int P_{j}(\lambda)s_{1}(\lambda)d\lambda$$
$$e_{2}(C) = \int C(\lambda)s_{2}(\lambda)d\lambda = \sum_{y=1}^{3} T_{j}(C)A_{j}(W)\int P_{j}(\lambda)s_{2}(\lambda)d\lambda$$
$$e_{3}(C) = \int C(\lambda)s_{3}(\lambda)d\lambda = \sum_{y=1}^{3} T_{j}(C)A_{j}(W)\int P_{j}(\lambda)s_{3}(\lambda)d\lambda$$

Video Signals

If the primary sources are monochromatic with unitary power $(P_j(\lambda) = \delta(\lambda - \psi_j))$ we can write:

$$e_1(C) = \int C(\lambda) s_1(\lambda) d\lambda = \sum_{y=1}^3 T_j(C) A_j(W) s_1(\psi_i)$$

$$e_{2}(C) = \int C(\lambda)s_{2}(\lambda)d\lambda = \sum_{y=1}^{3} T_{j}(C) A_{j}(W)s_{2}(\psi_{i})$$
$$e_{3}(C) = \int C(\lambda)s_{3}(\lambda)d\lambda = \sum_{y=1}^{3} T_{j}(C) A_{j}(W)s_{3}(\psi_{i})$$

Video Signals

Video Signals

Video S

Cones do not "see" colors

Different wavelength, different intensity

Same response

Video Signals

Response comparison

Different wavelength, different intensity

But different response for different cones

Video Signals

von Helmholtz 1859: Trichromatic theory

Colors as relative responses (ratios)

Wavelengths (nm)

Video Signals

For some colors it is impossible to find A_1 , A_2 , A_3 all positives, i.e. it is impossible to obtain the match as the sum: $A_1(C)R+A_2(C)G+A_3(C)B$.

The "trick" is to add to the analyzed color one or more primary colors:

this is equivalent to say that primary components can have negative values:

 $C+A_1(C)\mathbf{R} = A_2(C)\mathbf{G}+A_3(C)\mathbf{B}$ $C=-A_1(C)\mathbf{R}+A_2(C)\mathbf{G}+A_3(C)\mathbf{B}$

Mixing curves

Mixing curvesTs1(λ), Ts2(λ), Ts3(λ) represents, within a resolution of ~1 nm the tristimulus values for a unitary energy

$$C_{\psi} = \delta(\lambda - \psi)$$
$$e_i(C_{\psi}) = \int \delta(\lambda - \psi) s_i(\lambda) d\lambda =$$
$$= \sum_{j=1}^3 A_j(W) T_{sj}(\psi) \int P_j(\lambda) s_i(\lambda) d\lambda$$

For a color with specttrum $C(\lambda)$ the tristimulus components can be obtained as:

$$T_{j}(C) = \int C(\psi) T_{sj}(\psi) d\psi \qquad j = 1,2,3$$

Video Signals

Color Matching functions Ro Go Bo

Video Signals

Color space

Colors can be represented in a 3D space but it is simpler to work with only two coordinates (assuming Y constant)

C=d**R**+e**G**+f**B**, if d+e+f=T **r**=d/T; **g**=e/T; **b**=f/T Since **r**+**g**+**b**=1, we can work with two coordinates (*chromatic coordinates*), the luminance is assumed constant(Y)

We then get chormaticity diagrams with only **hue** and **saturation**.

Points locus for visible light.

Video Signals

With a proper primary choice it is possible to obtain positive chomaticity space (for each λ).

$$\begin{bmatrix} X\\Y\\Z \end{bmatrix} = \frac{1}{b_{21}} \begin{bmatrix} b_{11} & b_{12} & b_{13}\\b_{21} & b_{22} & b_{23}\\b_{31} & b_{32} & b_{33} \end{bmatrix} \begin{bmatrix} R\\G\\B \end{bmatrix} = \frac{1}{0.17697} \begin{bmatrix} 0.49 & 0.31 & 0.20\\0.17697 & 0.81240 & 0.01063\\0.00 & 0.01 & 0.99 \end{bmatrix} \begin{bmatrix} R\\G\\B \end{bmatrix}$$

Chromatic space X Y Z

Video Signals

Chromatic coordinates x y

C=aX+bY+cZ, Where a+b+c=T

Video Signals

Summing colors

In the chromaticity diagram the linear combination of two colors (with positive coefficients) represents the segment joining those two colors

C₂

Once three primary sources are chosen a triangle is defined in the chromatic space.

Fundamental colors in Television

Fundamental colors

Horseshoe Shape of Visible Color

Video Signals

Colors perceptivity

Ellipses represent the locus of colors hardly distinguishable with respect to the central point color.

The X,Y space is not perceptively uniform.

(a) x-y chromaticity diagram

Video Signals

The Hue, saturation, value space

Conversion from RGB to HSV

Let $r, g, b \in [0,1]$ be the red, green, and blue coordinates, respectively, of a color in RGB space.

Let *max* be the greatest of *r*, *g*, and *b*, and *min* the least.

To find the hue angle $h \in [0, 360]$ for HSV space, compute:

$$h = \begin{cases} 0, & \text{if max} = \min \\ (60^\circ \times \frac{g-b}{\max - \min} + 360^\circ) \mod 360^\circ, & \text{if max} = r \\ 60^\circ \times \frac{b-r}{\max - \min} + 120^\circ, & \text{if max} = g \\ 60^\circ \times \frac{r-g}{\max - \min} + 240^\circ, & \text{if max} = b \end{cases}$$

To find saturation and lightness $s, l \in [0,1]$ for HSV space, compute:

$$s = \begin{cases} 0, & \text{if } \max = 0\\ \frac{\max - \min}{\max} = 1 - \frac{\min}{\max}, & \text{otherwise} \end{cases}$$

Video Signals

Conversion from HSV to RGB

Similarly, given a color defined by (h, s, v) values in HSV space, with h as above, and with s and v varying between 0 and 1, representing the saturation and value, respectively, a corresponding (r, g, b) triplet in RGB space can be computed:

Video Signals