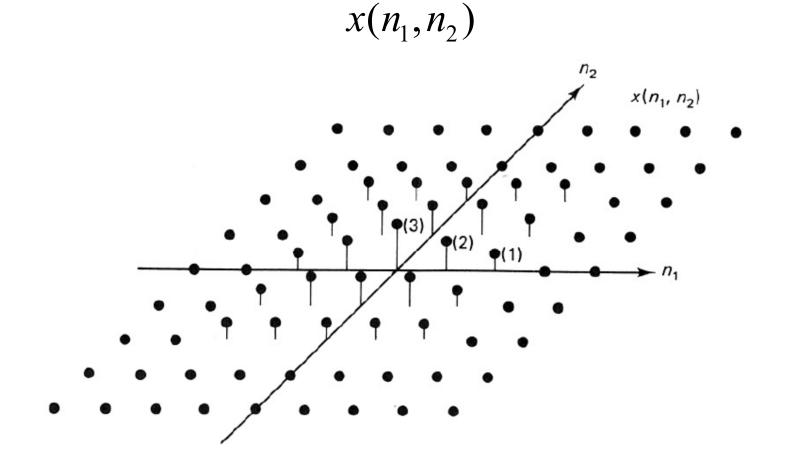
Video signals

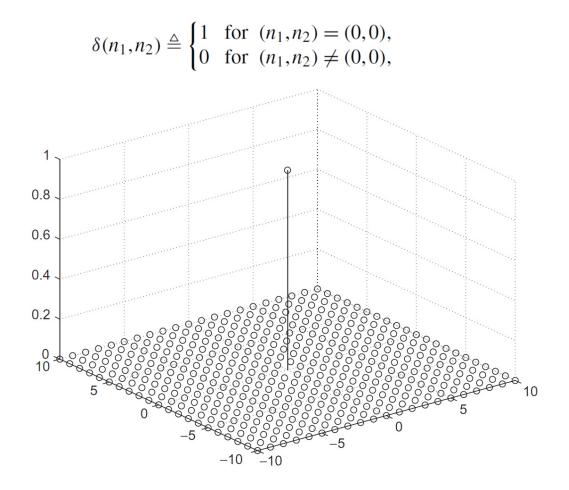
IMAGE AS BIDIMENSIONAL SIGNALS

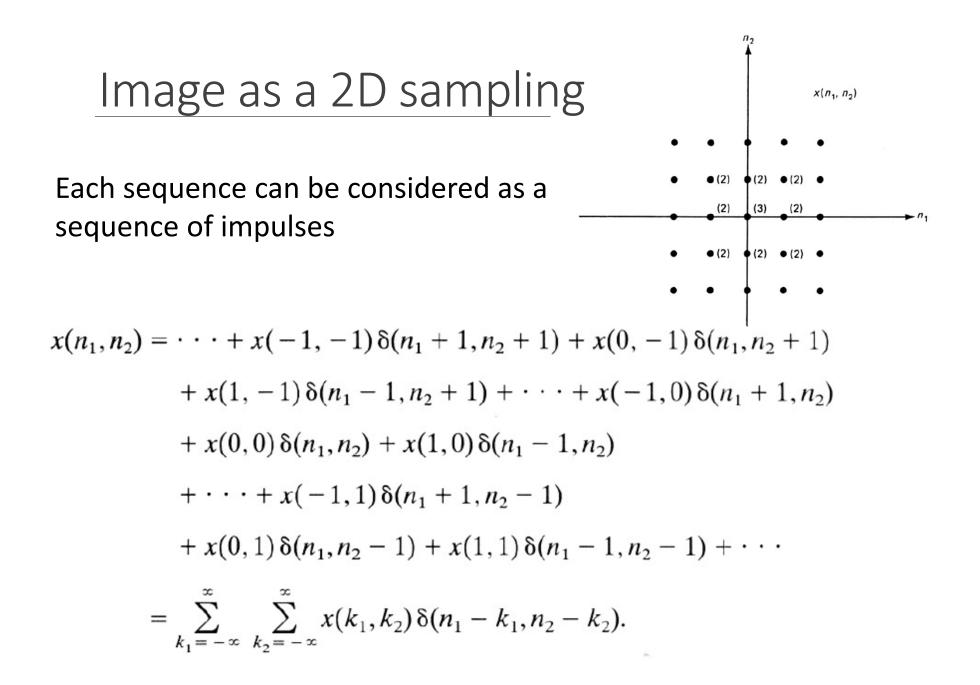
Image as a 2D sampling

A digital image can be considered as a 2D discrete signal



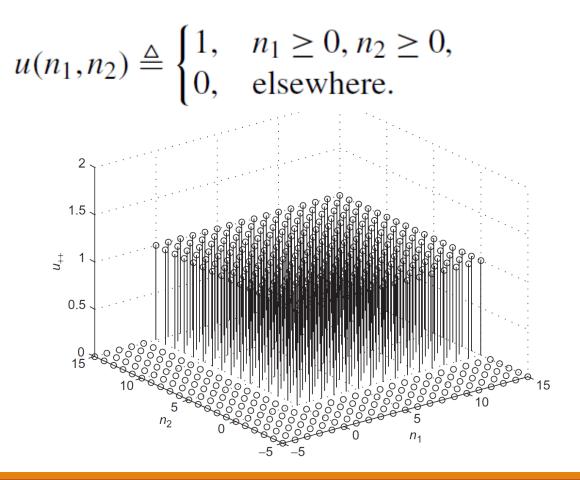
Impulse definition





The unit step function

The step function as a combination of impulses.



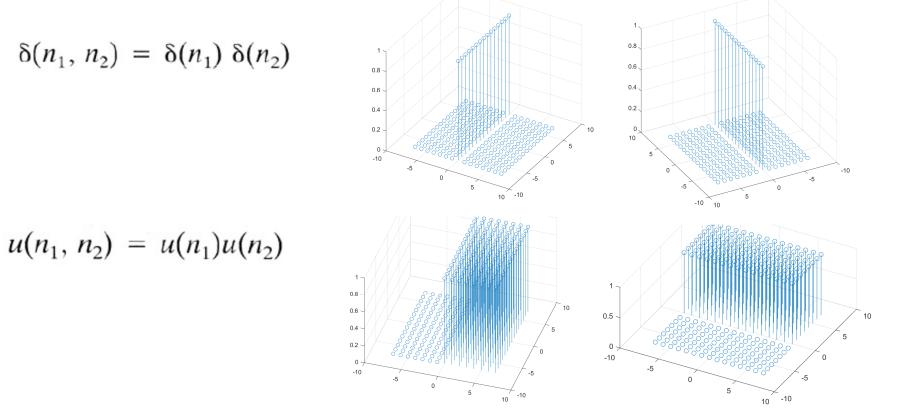
Video Signals

Separable sequences

A separable 2D sequence can be written as:

 $x(n_1, n_2) = x_1(n_1)x_2(n_2)$ for all n_1 and n_2 ,

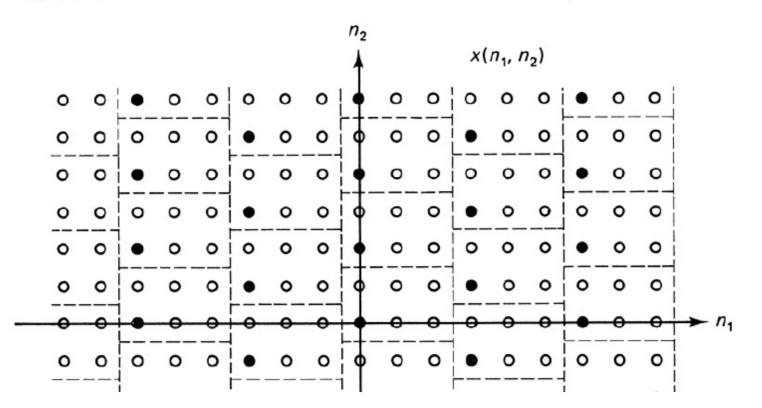
The impulse and step function are separable functions



Periodic sequences

A sequence $x(n_1, n_2)$ is periodic of period $N_1 \times N_2$ if:

 $x(n_1, n_2) = x(n_1 + N_1, n_2) = x(n_1, n_2 + N_2)$ for all (n_1, n_2)



Linear Shift Invariant Systems

Linearity

$$T[ax_1(n_1, n_2) + bx_2(n_1, n_2)] = ay_1(n_1, n_2) + by_2(n_1, n_2)$$

Spatial invariance

$$T[x(n_1 - m_1, n_2 - m_2)] = y(n_1 - m_1, n_2 - m_2)$$

The impulse response

$$y(n_1, n_2) = T[x(n_1, n_2)] = T\left[\sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} x(k_1, k_2) \,\delta(n_1 - k_1, n_2 - k_2)\right]$$
$$= \sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} x(k_1, k_2) T[\delta(n_1 - k_1, n_2 - k_2)].$$

Convolution

Defined the impulse response

$$h(n_1, n_2) = T[\delta(n_1, n_2)].$$

The Input/Output relation is given by:

$$y(n_1, n_2) = T[x(n_1, n_2)] = \sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} x(k_1, k_2)h(n_1 - k_1, n_2 - k_2).$$

$$y(n_1, n_2) = x(n_1, n_2) * h(n_1, n_2)$$

= $\sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} x(k_1, k_2)h(n_1 - k_1, n_2 - k_2).$

Convolution properties

Commutativity

$$x(n_1, n_2) * y(n_1, n_2) = y(n_1, n_2) * x(n_1, n_2)$$

Associativity

 $(x(n_1, n_2) * y(n_1, n_2)) * z(n_1, n_2) = x(n_1, n_2) * (y(n_1, n_2) * z(n_1, n_2))$

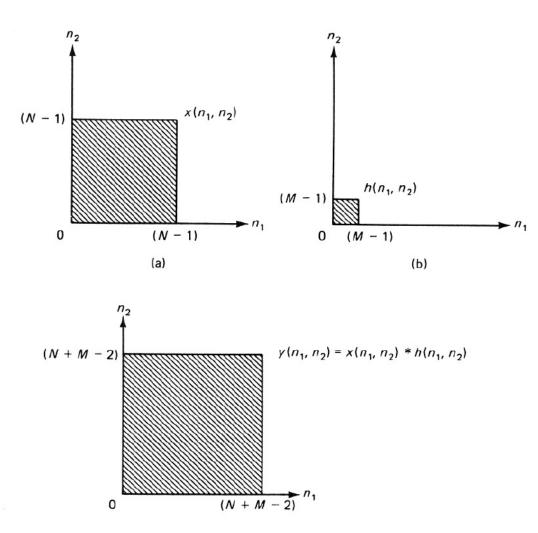
Distributivity

$$\begin{aligned} x(n_1, n_2) * (y(n_1, n_2) + z(n_1, n_2)) \\ &= (x(n_1, n_2) * y(n_1, n_2)) + (x(n_1, n_2) * z(n_1, n_2)) \end{aligned}$$

Convolution with Shifted Impulse

$$x(n_1, n_2) * \delta(n_1 - m_1, n_2 - m_2) = x(n_1 - m_1, n_2 - m_2)$$

Convolution examples



The 2D Fourier Transform

The analysis and synthesis formulas for the 2D continuous Fourier transform are as follows:

Analysis

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi(ux+vy)} dx \, dy$$

Synthesis

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{j2\pi(ux+vy)} du \, dv$$

Separability of 2D Fourier Transform

The 2D analysis formula can be written as a 1D analysis in the *x* direction followed by a *1D* analysis in the *y* direction:

$$F(u,v) = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} f(x,y) e^{-j2\pi u x} dx \right] e^{-j2\pi v y} dy$$

The 2D synthesis formula can be written as a 1D synthesis in the *x* direction followed by a 1D synthesis in *y* direction:

$$f(x,y) = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} F(u,v) e^{j2\pi ux} du \right] e^{j2\pi vy} dv$$

Separability Theorem

$$f(x,y) = f(x)g(y) \xrightarrow{\mathcal{F}} F(u,v) = F(u)G(v)$$

Proof:

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi(ux+vy)} dx \, dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x)g(y) e^{-j2\pi ux} e^{-j2\pi vy} \, dx \, dy$$

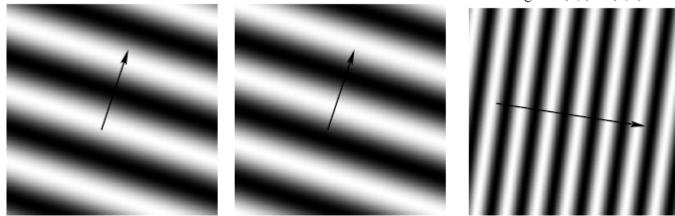
$$= \int_{-\infty}^{\infty} f(x) e^{-j2\pi ux} \, dx \int_{-\infty}^{\infty} g(y) e^{-j2\pi vy} \, dy$$

$$= F(u) G(v)$$

2D Fourier Basis Functions

Grating for (k,l) = (1,-3)

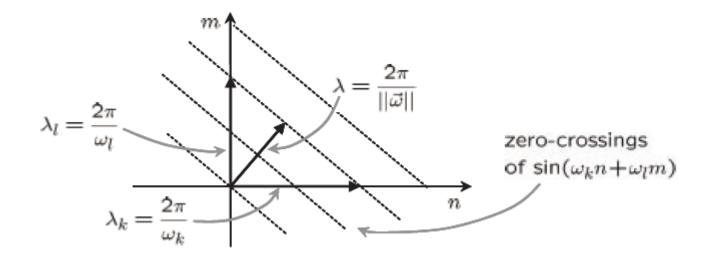
Grating for (k,l) = (7,1)



Real

Imag

Real



The 2D Discrete Fourier Transform for periodic signals

The analysis and synthesis formulas for the 2D discrete Fourier transform are as follows:

Analysis

$$\hat{F}(k,\ell) = \frac{1}{\sqrt{MN}} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} F(m,n) e^{-j2\pi \left(k\frac{m}{M} + \ell\frac{n}{N}\right)}$$

$$F(m,n) = \frac{1}{\sqrt{MN}} \sum_{k=0}^{M-1} \sum_{\ell=0}^{N-1} \hat{F}(k,\ell) e^{j2\pi \left(k\frac{m}{M} + \ell\frac{n}{N}\right)}$$

Video Signals

$$\frac{\text{Separability of 2D DFT}}{\hat{F}(k,\ell)} = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \left[\frac{1}{\sqrt{M}} \sum_{m=0}^{M-1} F(m,n) e^{-j2\pi \left(k\frac{m}{M}\right)} \right] e^{-j2\pi \left(\ell\frac{n}{N}\right)}$$

The 2D forward DFT (for a squared input matrix of size SxS)can be written in matrix notation:

 $\hat{\mathbf{F}} = (\mathbf{W}^* \mathbf{F}) \, \mathbf{W}^*$

Where *r* and *c* are row and column indexes starting from zero.

$$W_{rc}^* = \frac{1}{\sqrt{S}} e^{-j2\pi \frac{rc}{S}}$$

Separability of 2D DFT

And

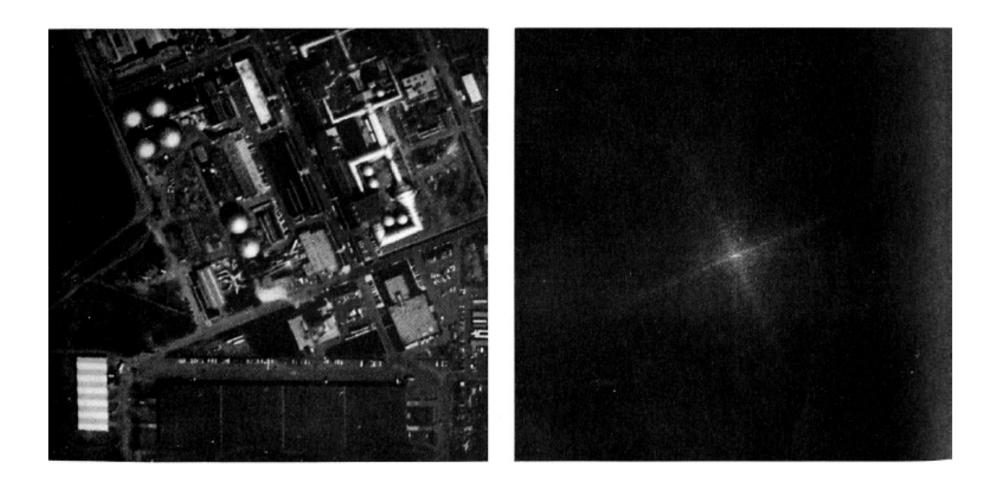
$$F(m,n) = \frac{1}{\sqrt{N}} \sum_{\ell=0}^{N-1} \left[\frac{1}{\sqrt{M}} \sum_{k=0}^{M-1} \hat{F}(k,\ell) e^{j2\pi \left(k\frac{m}{M}\right)} \right] e^{j2\pi \left(\ell\frac{n}{N}\right)}.$$

The 2D inverse DFT can be written in matrix notation: $\mathbf{F} = \left(\mathbf{W}\hat{\mathbf{F}}
ight)\mathbf{W}$

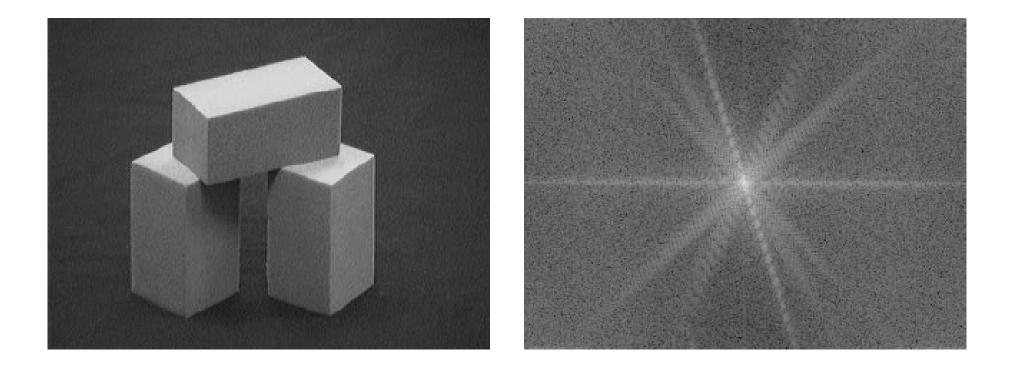
Where the matrix elements are

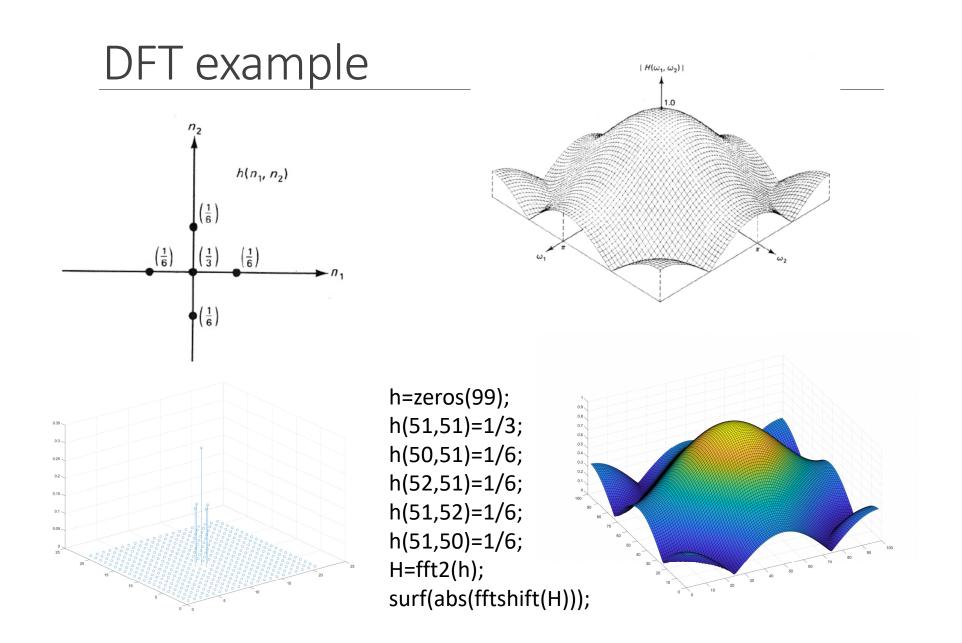
$$W_{rc} = \frac{1}{\sqrt{A}} e^{j2\pi \frac{rc}{A}}$$

Transform examples

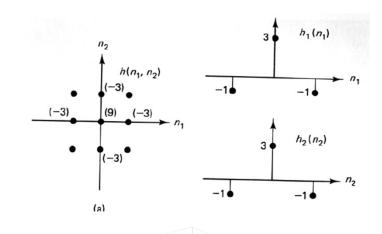


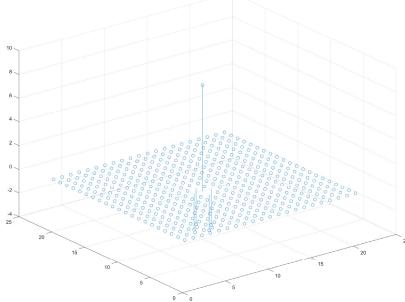
2D DFT Example

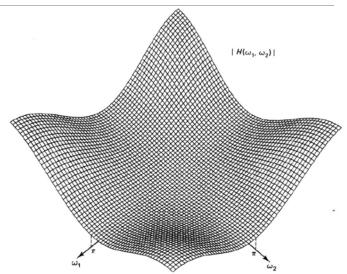




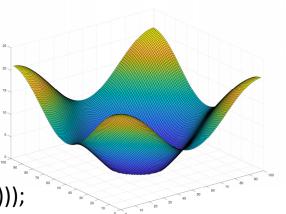
Hi-Pass Filter example



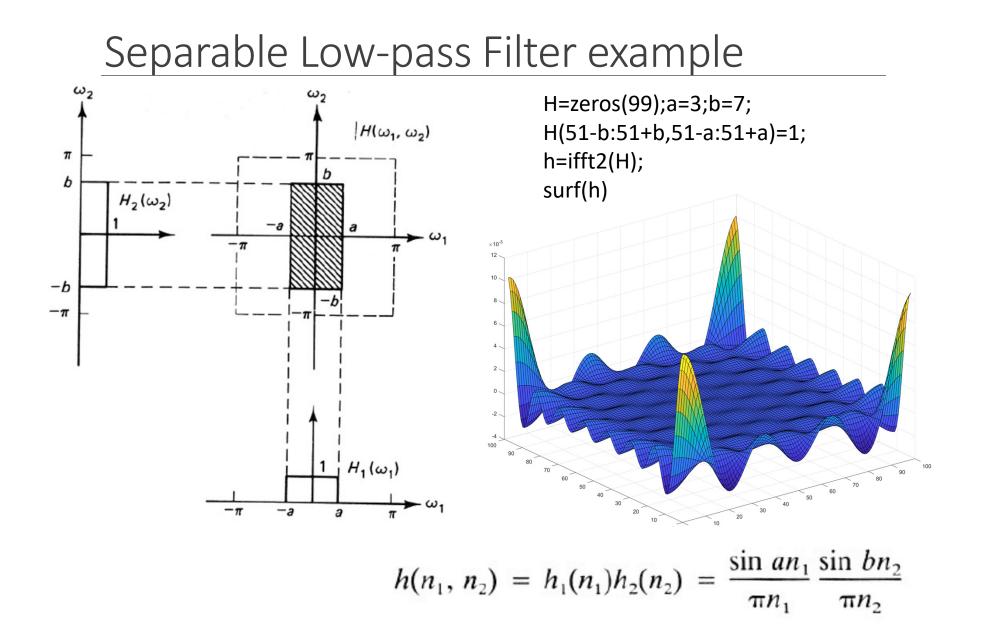




h=zeros(99); h(51,51)=9; h(50,51)=-3; h(52,51)=-3; h(51,50)=-3; h(51,52)=-3; H=fft2(h); surf(abs(fftshift(H)));



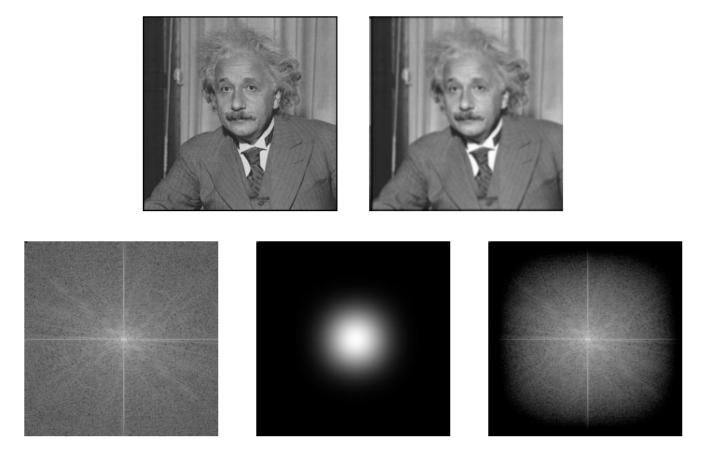
Video Signals



Video Signals

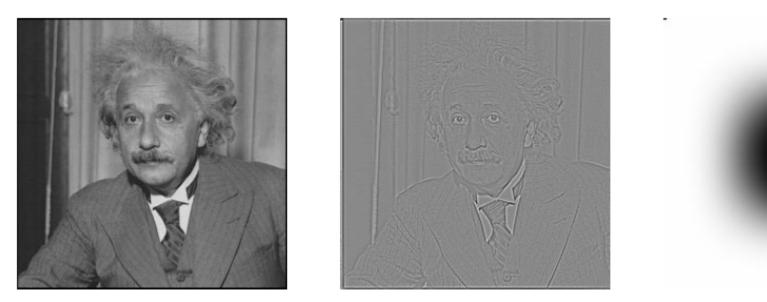
low-pass (blurred) version of an image

h(n)= $\frac{1}{16}$ (1,4,6,4,1) (1D impulse response in both dimensions)



Video Signals

Hi-Pass Filter



impulse response is defined by $\delta(n)$ -h(n,m) where h(n,m) is the separable blurring kernel used in the previous figure

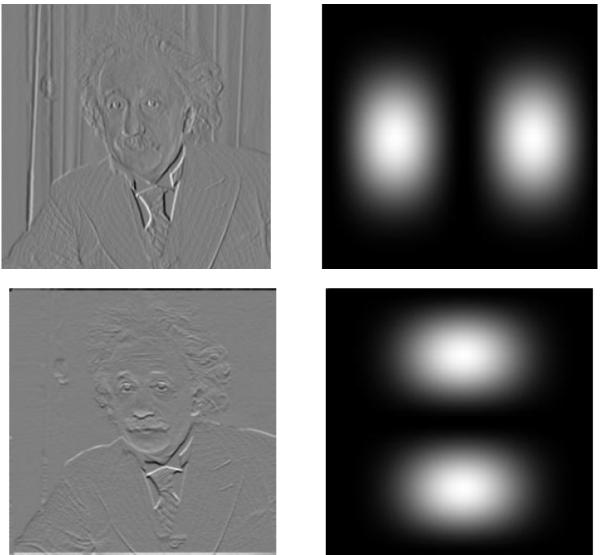
5

Band Pass Filter

a band-pass filtered version of Albert, and the amplitude spectrum of the filter.

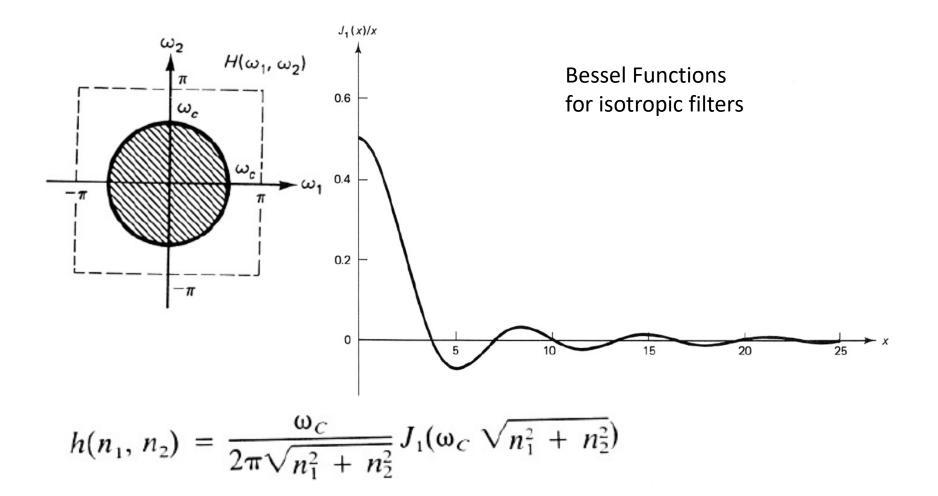
This impulse response is defined by the difference of two low-pass filters.

Directional filters



Video Signals

Circular filter example



Video Signals

Nyquist Sampling Theorem and Aliasing

Consider a perspective image of an infinite checkerboard.

The signal is dominated by high frequencies in the image near the horizon.

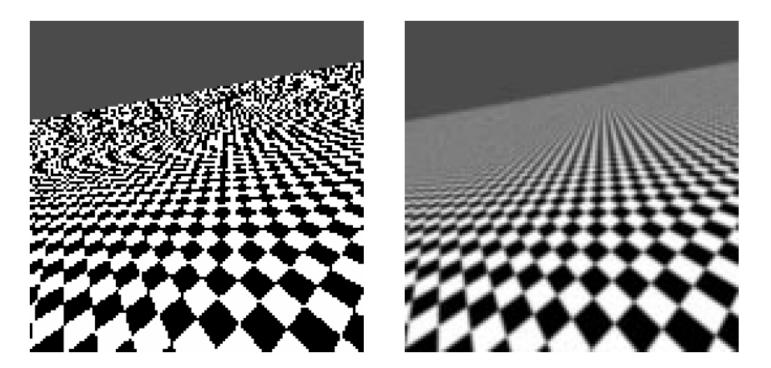
Properly designed cameras blur the signal before sampling using:

- The point spread function due to diffraction
- Imperfect focus
- Averaging the signal over each CCD element.

Nyquist Sampling Theorem and Aliasing

These operations attenuate high frequency components in the signal.

Without this (physical) preprocessing, the sampled image can be severely aliased (corrupted):



Reconstruction using just phase or intensity

Video Signals

Image superposition combining phases and intesities

