Video Signals

IMAGE DEFINITION AND POINT
OPERATION



What is an image?

Ideally, we think of an image as a 2-dimensional light intensity function,
f(x,yé, where x and y are spatial coordinates, and f at (x,y) is related to the
brightness or color of the image at that point.

In practice, most images are defined over a rectangle.
Continuous in amplitude (,,continuous-tone®)

Continuous in space: no pixels!
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SAMPLING AND QUANTIZATION
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SAMPLING AND QUANTIZATION
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A Digital Image is Represented by Numbers
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]

280 pixels + Pixel = “picture element”

« Represents brightness at one point
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An image can be represented as a matrix

The pixel values f(x,y) are sorted into the matrix in ,natural”
order, with x corresponding to the column and y to the row
index.

Matlab, instead, uses matrix convention. This results in
f(xy) = f,, where f , denotes an individual element in
common matrix notation.

For a color image, f might be one of the components.
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Image Size and Resolution

200x200 100x100 50x50 25x25

These images were produced by simply picking every n-th sample
horizontally and vertically and replicating that value nXn times.

We can do better
o prefiltering before subsampling to avoid aliasing
° Smooth interpolation
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Reducing spatial resolution
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Images of different size

8.
. . < i

280 pixels

272 pixels
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Fewer Pixels Mean Lower Spatial Resolution

272 pixels

280 pixels 35 x 33 image
Interpolated to
280 x 272 pixels
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Color Components

Monochrome image

. £

R(x,v) = G(x,v) = B(x,v)

Red R(x,v) Green G(x,y)  Blue B(x,y)
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Different numbers of gray levels

By
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How many gray levels are required?

How many gray levels are required?

32 levels

64 levels

128 levels

‘256 levels
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Storage requirements for digital images

Image LxN pixels, 28 gray levels, ¢ color components

Size = LXNXBXc

o II:;xamﬁole: L=N=512, B=8, c=1 (i.e., monochrome) Size = 2,097,152 bits (or 256
Byte

o Example: LxN=1024x1280, B=8, c=3 (24 bit RGB image) Size = 31,457,280 bits (or
3.75 MByte)
Much less with (lossy) compression!

ror ar\]/ideo multiply by the frame rate and by the number of seconds of its
ength:

a 4K video at 50 fps would be: 2160x3840x8x3x50=10Gb/s = 1.2GB/s
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Brightness discrimination experiment
Can you see the circle?

Note: I1s luminance,

125 measured in cd/m?

Visibility threshold

Weber fraction®
—~ i~ 0 n
AIlI ~ const.~ 1...2% "\Weber's Law’
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Contrast with 8 Bits According to Weber’s Law

Assume that the luminance difference between two
successive representative levels is just at visibility threshold

I . 255
=E — (] 18
T (1+ const.)
For
I/
const.= 0.01---0.02 =i — 13---156

1min
Typical display contrast
o Cathode ray tube 100:1

° Print on paper 10:1

Suggests uniform quantization in the log(/) domain

Video Signals Marco Marcon



Histograms

Distribution of gray-levels can be evaluated by measuring a histogram:

-For B-bit image, initialize 28 counters with 0

- Loop over all pixels x,y
-When encountering gray level f(x,y)=i, increment counter #i

Histogram can be interpreted as an estimate of the probability density
function (pdf) of an underlying random process.

You can also use fewer, larger bins to trade off amplitude resolution
against sample size.
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Example histogram
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Example histogram
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Histogram comparison

Both these images present the same Histogram
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Histogram comparison

Histogram as an invariant feature

o
— Channel: Gray
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Histogram comparison
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Histogram equalization

Idea: find a non-linear transformation

g = T(f)

to be applied to each pixel of the input image f(x,y), such that a uniform distribution of gray
levels in the entire range results for the output image g(x,y).

Analyze ideal, continuous case first, assuming
0<fs1 0<g=s1
T(f) is strictly monotonically increasing, hence, there exists
f=T"g) 0<g=<1

Goal: pdf (probability density function) p,(g) = const. over the whole range.
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Histogram equalization for continuous case

From basic probability theory

P (2)= {p Af )Z—g

Consider the transformation function

g:T(f):ijf(cx)da 0<f<l1

f=T"(g)

Then
d
_g:Pf(f)

al

p.(2)= {pf(f )j—g - {pf(f %} =1

S ) LAV PR
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Histogram equalization for continuous case

l p(f)
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Histogram equalization for discrete case

Now, f only assumes discrete amplitude values f,, f,, ...,f,.;, with
probabilities:

n n n
— =2 —— ... — =Ll
Iy = I = I, =
n n n

A
Discrete approximation of g = T(f) — L pf(a)da

k
8r = T(fk): ZR
i=0

The resulting values g, are in the range [0,1] and need to be scaled and
rounded appropriately
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Histogram equalization example
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Histogram equalization example
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Histogram equalization example
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Histogram equalization example
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Adaptive Histogram Equalization

Apply histogram equalization based on a histogram
obtained from a portion of the image

Sliding window approach: Tiling approach:
different histogram (and mapping) subdivide into overlapping regions,
for every pixel mitigate blocking effect by smooth blending
hetween neighboring tiles

Must limit contrast expansion in flat regions of the
image, e.g. by clipping individual histogram values to
a maximum
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Adaptive Histogram Equalization

Original Global histogram Tiling Tiling
8x8 histograms 32x32 histograms
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Adaptive Histogram Equalization

Original image Tire Tire after  Tire after
equalization of adaptive histogram equalization
global histogram 8x38 tiles
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Point Operations Between Images

Image averaging for noise reduction

Combination of different exposure for high-dynamic range imaging
Image subtraction for change detection

Accurate alignment is always a requirement
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Image averaging for noise reduction

1image 2images 4 images
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Image averaging for noise reduction
Take N aligned images  f,(x.v), £, (%, %), fu(x. )

Average Image: 1: 1,,)_ Zf X, 1;

Mean squared error vs. noise-free image g

E\(7-g)|-E {[ >1)- ”_ ][([%Zigng”
5320 }f L E T )
h : -
provided E{n!.r.:j} =05, j E{n}=E{n}Vi
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High-dynamic range imaging

16 exposures, one f-stop (2X) apart
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Image subtraction

Find differences/changes

between 2 mostly identical
images Mask image-1  Mask image-2

Example from IC
manufacturing: defect
detection in photomasks by
die-to-die comparison Sensﬂr;_

Cu pansun

DUV Laser (I =266nm)
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Where is the Defect?
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Absolute Difference Between Two Images
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Digital subtraction angiography

Contrast
enhancement
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