
Video Signals
January, 19th 2026
Duration: 2 hours

Instructions. Answer all questions. Justify each step
clearly. Calculators and handwritten notes are not allowed.

Exercise 1 (12 pt)
In a binary image (objects = 1, background = 0) there are many
square frames (rings) having the same outer side length, but with
an inner square hole of two possible sizes:

• Type A: small inner hole
• Type B: large inner hole

Frames appear at different locations, do not overlap, and no
other shapes are present.
You must design a pipeline based on the Hit-or-Miss operator to:

1. detect (localize) all frames in the image;
2. robustly discriminate Type A from Type B;
3. output two binary masks: one containing only Type A frames and one containing only

Type B frames.

Required: Describe an implementable solution, detailing:
• any pre-processing steps (if needed) and their motivation;
• the design of the pair of structuring elements (foreground/background) for Hit-or-Miss;
• how you deal with the presence of a hole (e.g., complements, filling, additional

constraints);
• how Hit-or-Miss responses are converted into a final classification rule.

(No code is required, but the description must be complete and unambiguous.)

Exercise 2 (12 pt)
Consider the following grayscale image patch:

5 5 4 2 4
5 3 0 0 2
4 3 3 4 4
2 1 4 4 4
1 1 4 5 5

I

 
 
 
 =
 
 
  

1. Define a 3 × 3 Laplacian filter (write the kernel explicitly) and compute the output matrix
𝐿𝐿 obtained by convolving 𝐼𝐼 with this kernel.

2. For boundary handling, assume values outside the matrix are obtained using mirror
reflection.

3. Propose a rule to extract edges from 𝐿𝐿. Clearly state the chosen rule and justify it.
4. Explain how you would combine the Laplacian-based edges with a first-order operator

(e.g., Prewitt or Sobel) to reduce false edges. Specify:
• which first-order map is used,
• how threshold(s) are selected,
• the final logical decision rule (AND/OR, hysteresis, etc.).

Hint: clearly identify the steps that depend on the boundary condition.

[Continues on the back]

Exercise 3 (12 pt) Matlab Code
Visual inspection of plant leaves is an important task in agricultural monitoring, as the presence
of insects such as aphids can significantly affect crop health and yield. Manual inspection is
time-consuming and subjective, motivating the use of digital image processing techniques to
automatically detect and quantify insect infestation. A color image (test.png) of a leaf affected by
aphids is analyzed using color space transformation, contrast enhancement, filtering,
thresholding, and morphological operations to detect and count aphids present on the leaf
surface.

Write a MATLAB script able to perform the following steps:

a) Load the RGB image of the leaf and display it.
b) Convert the RGB image to the HSV color space and extract the Hue (H),

Saturation (S), and Value (V) components.
c) Apply adaptive histogram equalization to the Hue component in order to

enhance contrast between the aphids and the leaf background.
d) Reduce noise in the enhanced Hue image using a 3x3 median filter.
e) Perform binary segmentation to isolate aphids by applying logical thresholding

based on:
i. low intensity (Value) (lower than 0.45),
ii. low saturation (lower than 0.95),
iii. exclusion of typical leaf hues (green–yellow range) (outside 0.2-0.4

range).
f) Using a 3x3 square structuring element, apply a morphological operation of

your choice to remove small noise regions and improve object separation.
g) Label the connected components in the binary image and determine the total

number of aphids present.

List of
possible
Matlab

functions

figure
im2doubl
e
imread
rgb2gray
imcrop
imfilter
imhist
imopen
rgb2hvs
histeq
hist
imshow
fspecial
imerase
strel
hsv2rgb
bwlabel

Solutions
Ex 1
Detect all square frames (rings) and classify them into:

• Type A: small inner hole

• Type B: large inner hole

using Hit-or-Miss (HMT), then output two binary masks.

Let 𝑋𝑋 be the binary image (objects=1). Let 𝑋𝑋𝑐𝑐 be its complement. Hit-or-Miss at location
𝑝𝑝 is:

HMT(𝑋𝑋;𝐵𝐵1,𝐵𝐵2) = (𝑋𝑋⊖ 𝐵𝐵1) ∩ (𝑋𝑋𝑐𝑐 ⊖ 𝐵𝐵2),

where 𝐵𝐵1 constrains the foreground (must be 1) and 𝐵𝐵2 constrains the background
(must be 0).

To avoid detecting generic background areas (not holes), add a constraint that around
the hole there must be object pixels. Use a ring constraint around the hole:

• Foreground SE 𝐵𝐵1 placed on the ring (must be 1 in 𝑋𝑋).

• Background SE 𝐵𝐵2 placed inside the hole (must be 0 in 𝑋𝑋, i.e. 1 in 𝑋𝑋𝑐𝑐).

Concretely, for each type:

Type A detector: HMT(𝑋𝑋;𝐵𝐵1
(𝐴𝐴),𝐵𝐵2

(𝐴𝐴))  Type B detector: HMT(𝑋𝑋;𝐵𝐵1
(𝐵𝐵),𝐵𝐵2

(𝐵𝐵))

Where:

 ()
1

0 0 0 0 0 0 0
0 1 1 1 1 1 0
0 1 1 1 1 1 0
0 1 1 0 1 1 0
0 1 1 1 1 1 0
0 1 1 1 1 1 0
0 0 0 0 0 0 0

AB = ()
2

1 1 1 1 1 1 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 1 1 1 1 1 1

AB =

()
1

0 0 0 0 0 0 0
0 1 1 1 1 1 0
0 1 0 0 0 1 0
0 1 0 0 0 1 0
0 1 0 0 0 1 0
0 1 1 1 1 1 0
0 0 0 0 0 0 0

BB = ()
2

1 1 1 1 1 1 1
1 0 0 0 0 0 1
1 0 1 1 1 0 1
1 0 1 1 1 0 1
1 0 1 1 1 0 1
1 0 0 0 0 0 1
1 1 1 1 1 1 1

AB =

Where the origo is always in the center of the SE.

Ex 2

Given matrix

𝐼𝐼 =

⎣
⎢
⎢
⎢
⎡
5 5 4 2 4
5 3 0 0 2
4 3 3 4 4
2 1 4 4 4
1 1 4 5 5⎦

⎥
⎥
⎥
⎤

1) Laplacian kernel
Choose the 4-neighbour Laplacian:

𝐾𝐾 = �
0 1 0
1 −4 1
0 1 0

� ,  𝐿𝐿(𝑖𝑖, 𝑗𝑗) = 𝐼𝐼(𝑖𝑖 − 1, 𝑗𝑗) + 𝐼𝐼(𝑖𝑖 + 1, 𝑗𝑗) + 𝐼𝐼(𝑖𝑖, 𝑗𝑗 − 1) + 𝐼𝐼(𝑖𝑖, 𝑗𝑗 + 1) − 4𝐼𝐼(𝑖𝑖, 𝑗𝑗).

2) Boundary condition: mirror reflection
We use mirror reflection (symmetric at the borders). For example:

𝐼𝐼(0, 𝑗𝑗) = 𝐼𝐼(1, 𝑗𝑗), 𝐼𝐼(𝑛𝑛 + 1, 𝑗𝑗) = 𝐼𝐼(𝑛𝑛, 𝑗𝑗),

and similarly for columns (and extended by reflection for farther indices if needed).

3) Convolution result
The Laplacian output is:

𝐿𝐿 =

⎣
⎢
⎢
⎢
⎡

0 −3 −5 2 −4
−3 1 10 8 2
−2 −1 −1 −5 −2
0 6 −4 1 1
1 3 −2 −2 −1⎦

⎥
⎥
⎥
⎤

4) Edge extraction rule from 𝐿𝐿
A standard Laplacian rule is zero-crossings: a pixel (or a location between pixels) is an
edge if 𝐿𝐿 changes sign across a neighbourhood.

A robust discrete rule:

• consider an 8-neighbourhood 𝒩𝒩(𝑖𝑖, 𝑗𝑗);

• declare an edge at (𝑖𝑖, 𝑗𝑗) if ∃(𝑢𝑢, 𝑣𝑣) ∈ 𝒩𝒩(𝑖𝑖, 𝑗𝑗) such that

𝐿𝐿(𝑖𝑖, 𝑗𝑗) ⋅ 𝐿𝐿(𝑢𝑢, 𝑣𝑣) < 0

 and additionally

|𝐿𝐿(𝑖𝑖, 𝑗𝑗) − 𝐿𝐿(𝑢𝑢, 𝑣𝑣)| ≥ 𝑇𝑇𝐿𝐿

 to suppress weak sign flips (noise/quantization).

A reasonable choice here is 𝑇𝑇𝐿𝐿 ∈ [2,4] since the strongest magnitudes are around 10.

5) Combine with a first-order operator to reduce false edges
Use Sobel (or Prewitt) and compute gradient magnitude:

𝐺𝐺 = �𝐺𝐺𝑥𝑥2 + 𝐺𝐺𝑦𝑦2.

Then keep only zero-crossings that are also supported by a sufficiently strong gradient:

Edge = ZeroCross(𝐿𝐿,𝑇𝑇𝐿𝐿) ∧ (𝐺𝐺 ≥ 𝑇𝑇𝐺𝐺).

Threshold 𝑇𝑇𝐺𝐺 can be set:

• relative to the maximum: 𝑇𝑇𝐺𝐺 = 𝛼𝛼max(𝐺𝐺) with 𝛼𝛼 ∈ [0.15,0.3],

• or by histogram-based selection (e.g., upper percentile).

Optionally, apply hysteresis on 𝐺𝐺 (Canny-like): strong edges if 𝐺𝐺 ≥ 𝑇𝑇𝐻𝐻, weak edges if
𝑇𝑇𝐿𝐿′ ≤ 𝐺𝐺 < 𝑇𝑇𝐻𝐻 kept only if connected to strong ones, always gated by the Laplacian zero-
crossing.

Ex 3
close all;
clear all
clc;

imgPath = 'test.png';

% a) Load
Irgb = im2double(imread(imgPath));
figure
imshow(Irgb)
title('input image')

% b) RGB -> HSI
Ihsv = rgb2hsv(Irgb);
H = Ihsv(:,:,1);
S = Ihsv(:,:,2);
V = Ihsv(:,:,3);

% c) Adaptive histogram equalization
H_eq = adapthisteq(H);

figure
imshow(H_eq);
title('H_eq');

% d) median filter
H_f = medfilt2(H_eq, [3 3]);
figure
imshow(H_f);
title('H_f');

% e) Threshold
BW = (V < 0.45) & (S < 0.95) & ~((H_f >= 0.2) & (H_f <= 0.4));

% f) Morphological opening
se = strel('square', 3);
BW_open = imopen(BW, se);

%g) Count
CC = bwlabel(BW_open, 8);
count = max(CC(:));

	Required: Describe an implementable solution, detailing:
	Given matrix
	1) Laplacian kernel
	2) Boundary condition: mirror reflection
	3) Convolution result
	4) Edge extraction rule from 𝐿
	5) Combine with a first-order operator to reduce false edges

