
 Video Signals 
Date: 3 September 2019 
 
Ex.1.[11 pts] Consider the two following images with a 3x3 square, assume that all the background 

pixels are black and has a value of ‘0’ while the white pixels of the squares have a value of ‘1’. 

 
We want to extract edges of both shapes. In order to do this we want to use Sobel filters: 

• [2 pts] Define the Sobel filters for horizontal and vertical edge extraction. 
• [3 pts] Apply these filters to each image and provide the numerical results. 
• [6 pts] Gather the results from the previous point and define a suitable threshold value to 

mark edges. 
 
Es.2. [11 pt]  
Applying a JPEG encoding to an image, after the DCT transform of 4 different 8x8 blocks of the 

image we get the following results:  
 

( )1

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

DCT Block

 
 
 
 
 
 =  
 
 
 
 
  

( )2

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

DCT Block

 
 
 
 
 
 =  
 
 
 
 
  

 

 

( )3

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

DCT Block

 
 
 
 
 
 =  
 
 
 
 
  

( )4

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

DCT Block

 
 
 
 
 
 =  
 
 
 
 
  

 

• [2pts] What transform shall be used (provide the formula) in order to reconstruct  the 8x8 
Blocks? 

• [9pts] Describe and provide a qualitative intensity representation of the Blocks. 
 

The exam paper continues overleaf 
  



Es.3. [11 pt MATLAB Exercise]  
You are working for a tv news program and you want to broadcast some footage recorded by a 
smartphone that unfortunately was shot in portrait mode instead of landscape (i.e. it 
was shot vertically).  Write a MATLAB script able to take as an input a video frame 
(stored in a file called ‘image.jpg’ ) and generate a 720p (1280x720) version with 
blurred background superimposing also your logo (stored in ‘logo.png’) in the bottom 
right corner. 

a) Read the input 8-bit color image, convert it into an image of class double. Save 
its vertical and horizontal sizes in the variables h and w respectively. 

b) In order to create the landscape blurred version follow these steps: 
I. Obtain I_middle by resizing the original image so the output height would 

be 720 (the width must scale accordingly). 
II. Initialize I_out as a stretched version of I_middle having a width of 1280. 

III. Substitute each channel of I_out with a blurred version of them obtained 
applying a gaussian filter with 20 as size and 10 as standard deviation.  

IV. Substitute the central part of I_out with I_middle. 
c) Add the logo in the bottom right part of the image with the following steps: 

I. Read the logo 8-bit color image, convert it into an image of class double.  
II. Resize it obtaining a 100x200 image choosing an algorithm that do not 

blur the edges between the logo and the green background. 
III. Obtain a binary image that has true values where the logo is not pure 

green. 
IV. Superimpose the resized logo in the bottom right part of the image (do not copy the 

green background)  

 
 

 

  

Matlab 
List of 

possible 
functions 

figure 
rgb2ind 
im2doubl
e 
imread 
imclose 
zeros 
rgb2gray 
imcrop 
ones 
imopen 
imshow 
find 
fspecial 
min 
max 
strel 
imnoise 
imfilter 
round 
sum  
size 
imresize 
norm 
 

logo.png 

output 



Solutions 
 

Ex.1 

The Sobel vertical edge extractor filter is: 
1 0 1
2 0 2
1 0 1

x

− 
 = − 
 − 

G and the horizontal one is: 

1 2 1
0 0 0
1 2 1

y

− − − 
 =  
  

G ; convolving the vertical filter with the two images, assuming an infinite 

background of black pixels we get for the first image 1xI : 
0 0 0 0 0 0 0 
0 -1 -1 0 1 1 0 
0 -3 -3 0 3 3 0 
0 -4 -4 0 4 4 0 
0 -3 -3 0 3 3 0 
0 -1 -1 0 1 1 0 
0 0 0 0 0 0 0 
 
Filtering the second image with the vertical filter, we get 2xI : 
0 0 0 0 0 0 0 0 0 
0 0 0 -1 0 1 0 0 0 
0 0 -1 -3 0 3 1 0 0 
0 -1 -3 -3 0 3 3 1 0 
0 -2 -4 -2 0 2 4 2 0 
0 -1 -3 -3 0 3 3 1 0 
0 0 -1 -3 0 3 1 0 0 
0 0 0 -1 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 
 
The convolutions with the horizontal filter will simply be the transpose of these results. 
Combining the two filters, 2 2 2

filtered x yI I I= +  
And we get: 2

1 filteredI =  
0 0 0 0 0 0 0 
0 2 10 16 10 2 0 
0 10 18 16 18 10 0 
0 16 16 0 16 16 0 
0 10 18 16 18 10 0 
0 2 10 16 10 2 0 
0 0 0 0 0 0 0 
 
  



2
2 filteredI =  

0 0 2 4 2 0 0 0 
0 2 18 16 18 2 0 0 
2 18 18 4 18 18 2 0 
4 16 4 0 4 16 4 0 
2 18 18 4 18 18 2 0 
0 2 18 16 18 2 0 0 
0 0 2 4 2 0 0 0 
0 0 0 0 0 0 0 0 
 
A possible threshold on the squared filtered images could be 16. 

Ex.2 
In order to recover the original blocks we have to use the Inverse Discrete Cosine Transform, i.e. 

 
Applying the iDCT to Block1 we get a constant value (uniform 8x8 region). 
Applying the iDCT to Block2 we get an image with the highest horizontal frequencies: 

 
Applying the iDCT to Block3 we an image with a low frequency vertical sinusoid: 



 
Applying the iDCT to Block4 we get an image with the highest horizontal and vertical frequencies: 

 

Ex.3 
 
close all; clear all; 
  
%a) 
I = imread('image.jpg'); 
I = im2double(I); 
w = size(I,2); h = size(I,1); 
t_h = 720; t_w = 1280; 
  
%b1) 
I_middle = imresize(I,t_h/h); 
%b2) 
I_out = imresize(I,[t_h,t_w]); 
s_w = (t_w-size(I_middle,2))/2; 
for i=1:3 
    H = fspecial('gaussian',20,10); 
    I_out(:,:,i) = imfilter(I_out(:,:,i),H,'symmetric'); 
end 
  
%b3) 
s_w = (t_w-size(I_middle,2))/2; 
I_out(:,(s_w+1):(t_w - s_w),:) = I_middle; 
  
%c1) 
logo = imread('logo.png'); 
logo = im2double(logo); 
  
%c2) 
logo = imresize(logo,[100 200],'nearest'); 
  
%c3) 
M = (logo(:,:,1) == 0 & logo(:,:,2) == 1 & logo(:,:,3) == 0); 
M = ~M; 
  
%c4) 
for i = 1:size(M,1) 
    for j = 1:size(M,2) 



        if(M(i,j)) 
            I_out(620+i,1080+j,:) = logo(i,j,:); 
        end 
    end 
end 
  
figure(); imshow(I_out) 
  
 


	Solutions
	Ex.1
	Ex.2
	Ex.3

