Ex.1.[11 Pt]

Consider the following target symbol:
 following image skipping any similar but not exactly equal symbol.

Provide a detailed description of the procedure, of the geometry of the involved objects and of possible problems/drawbacks.

Es.2. [11 pt]

An image is represented by two vertical lines with abscissas equal to 2 ad 4. What is its Discrete Space Fourier Transform?

.Es. 3 [11 pt] MATLAB

Re-implement exercise 1 in matlab defining assuming that the image is already a Black and White image represented by a matrix 'Image' and the target (the flipped 'L') is represented by a matrix 'Target'. In particular find the position of the targets in the image and count them.

Es.3. [13 pt] You are walking in the park when suddenly a wild Pokémon appears! Well, actually the Pokémon needs your help in order to be able to appear in augmented reality. Given a Pokémon stored in the image pikachu.png, and the scene DEIB_park.jpg captured by your smartphone camera (both are RGB images with 8bit per channel), write the MATLAB code that places the Pokémon inside the captured scene. Proceed as follows:
a) Read and visualize the two images;
b) Prepare the Pokémon image for the mixing:
b1) resize it so that its height is $1 / 4$ of the height of the scene image;
b2) knowing that on the image the background is pure green, find the coordinates of Pokémon pixels, i.e. rows and columns of the image that are not the background (hint: [row, col] = find(...));
c) Elaborate the scene image in order to find a suitable location for our Pokémon (it can't just randomly fly around, right?). To do so, let's suppose that there is a table in the scene and that somehow we know that its color is close to $\left[\mathrm{R}_{0}, \mathrm{G}_{0}, \mathrm{~B}_{0}\right]=[188,186,197]$. To find the table, divide the image into pieces and find the piece that contains the highest number of pixels that are close to the given color:
c1) we want to divide the image using a $9 x 6$ uniform grid - find the size of the pieces (height and width in pixels) and initialize a matrix that will be used to store the distance measure of each piece with respect to the reference color $\left[\mathrm{R}_{0}, \mathrm{G}_{0}, \mathrm{~B}_{0}\right]$;
c2) for each piece do the following: knowing the size of the pieces, compute the positions of the current piece pixels and use them to extract the corresponding R, G and B planes. For each color plane analyze its histogram to find the bin with highest number of pixels. Use the corresponding color values $\mathrm{R}_{\mathrm{m}}, \mathrm{G}_{\mathrm{m}}, \mathrm{B}_{\mathrm{m}}$ to compute the color distance of the current piece from the reference color $\left[\mathrm{R}_{0}, \mathrm{G}_{0}, \mathrm{~B}_{0}\right]$, as

$$
\text { dist }=\sqrt{\left(R_{m}-R_{0}\right)^{2}+\left(G_{m}-G_{0}\right)^{2}+\left(B_{m}-B_{0}\right)^{2}}
$$

Store the computed distance in the previously initialized matrix;
c3) given the matrix that contains the distance measure computed for each image piece, find the piece with lowest distance value. We want to use the center of this piece as a Pokémon location - compute its coordinates;

Matlab
 List of possible functions

figure
im2double
im2bw
rgb2gray
fspecial
imread
imresize
imrotate
imfilter
imnoise
imhist
fft2
ifft2
imshow
imagesc
getimage
size
zeros
find
abs
angle
conj
double
max
min
imerode
imdilate
imopen
imclose
d) Place the Pokémon inside the scene: for each pixel that is not a background, computed in step b2), find a corresponding pixel in the scene image, staring from the coordinates computed in step c3), and replace it with the Pokémon pixel. Visualize the result. Finally, a wild Pokémon appeared!

Solutions

Ex. 1

Ex. 2

Ex. 3

\% a)
I1 = imread('pikachu.png'); figure; imshow(I1);
I2 = imread('DEIB_park.jpeg'); figure; imshow(I2);
\% b1)
I1 = imresize(I1, 0.25*size(I2,1)/size(I1,1));
\% b2)
[pika_r, pika_c] = find(I1(:,:,1) ~= $0 \mid$ I1(:,:,2) ~= $255 \mid I 1(:,: 3) \sim=0) ;$
\% c1)
$\mathrm{Nr}=9 ;$ nRows $=\operatorname{size}(12,1) / \mathrm{Nr}$;
Nc $=6$; nColumns $=\operatorname{size}(12,2) / \mathrm{Nc}$;
colorDist $=$ zeros(Nr,Nc);
\% c2)
for i = 1:Nr
for $\mathrm{j}=1: \mathrm{Nc}$
pieceRows = nRows*(i-1)+1:nRows*i;
pieceColumns = nColumns*(j-1)+1:nColumns*j;
hR = imhist(I2(pieceRows, pieceColumns,1));
hG = imhist(I2(pieceRows, pieceColumns,2));
hB = imhist(I2(pieceRows, pieceColumns,3));
$[\sim, R]=\max (h R) ;[\sim, G]=\max (h G) ;[\sim, B]=\max (h B)$;
colorDist(i, j) $=$ norm(double([R,G,B]+1) - [188, 186, 197]);
end
end
\% c3)
[i,j] = find(colorDist == min(colorDist(:)));
start_r = nRows*(i-1) + nRows/2 - size(I1,1);
start_c = nColumns*(j-1) + nColumns/2;
\% d)
for n = 1:length(pika_c)
I2(start_r + pika_r(n), start_c + pika_c(n),:) = I1(pika_r(n),pika_c(n),:);
end
figure; imshow(I2); title('A wild Pikachu appeared!');

