
Video Signals
Date: 16/02/2017

Ex.1.[12 Pt] Due to an error in the

acquisition settings the Mona Lisa
image on the left is acquired as
shown on the right.
The estimated PSF of the optics is
the following:

1 1 1
1 1 1 1
9

1 1 1
PSF

 
 =  
  

1. Describe how to the PSF
can be estimated once you
know the real and the
acquired image (working in
the frequency domain).

2. Assuming the absence of
noise during acquisition, describe all required steps in order to restore the image.
What problems could arise?

Es.2. [7pt]
 Describe how the Fourier Transform can be adopter in order to retrieve orientation of straight

lines inside images. Is the location of the straight line also encoded in the Fourier Transform? If
yes, how can we retrieve it?

.Es.3 is over the page

Es.3. [13 pt] You are walking in the park when suddenly a wild Pokémon
appears! Well, actually the Pokémon needs your help in order to be able to
appear in augmented reality. Given a Pokémon stored in the image
pikachu.png, and the scene DEIB_park.jpg captured by your smartphone
camera (both are RGB images with 8bit per channel), write the MATLAB code
that places the Pokémon inside the captured scene. Proceed as follows:

a) Read and visualize the two images;
b) Prepare the Pokémon image for the mixing:

b1) resize it so that its height is 1/4 of the height of the scene image;
b2) knowing that on the image the background is pure green, find the
coordinates of Pokémon pixels, i.e. rows and columns of the image that
are not the background (hint:[row, col] = find(…));

c) Elaborate the scene image in order to find a suitable location for our
Pokémon (it can’t just randomly fly around, right?). To do so, let’s
suppose that there is a table in the scene and that somehow we know
that its color is close to [R0, G0, B0] = [188, 186, 197]. To find the table,
divide the image into pieces and find the piece that contains the highest
number of pixels that are close to the given color:
c1) we want to divide the image using a 9x6 uniform grid – find the size
of the pieces (height and width in pixels) and initialize a matrix that will
be used to store the distance measure of each piece with respect to the
reference color [R0, G0, B0];
c2) for each piece do the following: knowing the size of the pieces,
compute the positions of the current piece pixels and use them to extract
the corresponding R, G and B planes. For each color plane analyze its
histogram to find the bin with highest number of pixels. Use the
corresponding color values Rm, Gm, Bm to compute the color distance of
the current piece from the reference color [R0, G0, B0], as

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = �(𝑅𝑅𝑚𝑚 − 𝑅𝑅0)2 + (𝐺𝐺𝑚𝑚 − 𝐺𝐺0)2 + (𝐵𝐵𝑚𝑚 − 𝐵𝐵0)2
Store the computed distance in the previously initialized matrix;
c3) given the matrix that contains the distance measure computed for
each image piece, find the piece with lowest distance value. We want to
use the center of this piece as a Pokémon location – compute its
coordinates;

d) Place the Pokémon inside the scene: for each pixel that is not a background, computed in
step b2), find a corresponding pixel in the scene image, staring from the coordinates
computed in step c3), and replace it with the Pokémon pixel. Visualize the result. Finally, a
wild Pokémon appeared!

A wild Pikachu appeared!

Matlab
List of possible

functions

figure
im2double
im2bw
rgb2gray
fspecial
imread
imresize
imrotate
imfilter
imnoise
imhist
fft2
ifft2
imshow
imagesc
getimage
size
zeros
find
abs
angle
conj
double
max
min
imerode
imdilate
imopen
imclose

Solutions

Ex.1

Ex.2

Ex.3
% a)
I1 = imread('pikachu.png'); figure; imshow(I1);
I2 = imread('DEIB_park.jpeg'); figure; imshow(I2);

% b1)
I1 = imresize(I1, 0.25*size(I2,1)/size(I1,1));
% b2)
[pika_r, pika_c] = find(I1(:,:,1) ~= 0 | I1(:,:,2) ~= 255 | I1(:,:,3) ~= 0);

% c1)
Nr = 9; nRows = size(I2,1)/Nr;
Nc = 6; nColumns = size(I2,2)/Nc;
colorDist = zeros(Nr,Nc);
% c2)
for i = 1:Nr
 for j = 1:Nc
 pieceRows = nRows*(i-1)+1:nRows*i;
 pieceColumns = nColumns*(j-1)+1:nColumns*j;
 hR = imhist(I2(pieceRows, pieceColumns,1));
 hG = imhist(I2(pieceRows, pieceColumns,2));
 hB = imhist(I2(pieceRows, pieceColumns,3));
 [~,R] = max(hR); [~,G] = max(hG); [~,B] = max(hB);
 colorDist(i,j) = norm(double([R,G,B]+1) - [188,186,197]);
 end
end
% c3)
[i,j] = find(colorDist == min(colorDist(:)));
start_r = nRows*(i-1) + nRows/2 - size(I1,1);
start_c = nColumns*(j-1) + nColumns/2;

% d)
for n = 1:length(pika_c)
 I2(start_r + pika_r(n), start_c + pika_c(n),:) = I1(pika_r(n),pika_c(n),:);
end
figure; imshow(I2); title('A wild Pikachu appeared!');

	Video Signals
	Solutions
	Ex.1
	Ex.2
	Ex.3

