
Marco Tagliasacchi

Lecture Notes on Fundamentals of

Audio-Video Signal Processing

November 12, 2007

Politecnico di Milano

Contents

Part I Fundamentals of Digital Signal Processing

1 Introduction to the Discrete Fourier Transform . 3

1.1 Discrete Fourier Transform . 3

1.2 Inverse Discrete Fourier Transform . 4

1.3 Mathematics of the DFT . 4

1.4 Derivation of the Discrete Fourier Transform . 5

1.5 Frequencies in the “cracks” . 9

1.6 Matrix Formulation of the DFT . 12

1.7 Fourier Theorems for the DFT . 13

1.8 Fourier transforms for Continuous/Discrete Time/Frequency 21

2 Introduction to digital filters . 23

2.1 Digital filters . 23

2.2 Time domain filter representations . 25

2.3 Transfer function analysis . 30

2.4 Frequency response analysis . 35

3 Windowing and Short Time Fourier Transform . 49

3.1 Overview of windows . 49

3.2 Overlap and add . 61

VIII Contents

4 Digital filter design techniques . 73

4.1 Filter specifications . 73

4.2 IIR filter design . 74

4.3 FIR filter design . 84

4.4 Optimum FIR filter design . 88

4.5 Selection of filter type . 91

5 Introduction to multirate processing . 95

5.1 Downsampling . 95

5.2 Upsampling . 97

5.3 Decimation . 98

5.4 Interpolation . 100

5.5 Multirate identities . 101

5.6 Polyphase filters . 102

5.7 Polyphase filter banks . 107

5.8 Perfect reconstruction filter banks . 109

Part II Fundamentals of statistical signal processing

6 Introduction to discrete random processes . 117

6.1 Random sequences . 117

6.2 Jointly distributed random sequences . 119

7 Spectral estimation . 125

7.1 Introduction to estimation theory . 125

7.2 Basic concepts . 131

7.3 Power spectral density . 132

7.4 Spectral estimation problem . 135

7.5 Nonparametric spectral estimation . 136

7.6 Parametric spectral estimation . 146

Contents IX

8 Linear prediction . 151

8.1 Basic principles of LPC . 151

8.2 Statistical interpretation of LPC . 155

8.3 Infinite memory linear prediction . 158

8.4 Computation of the LPC parameters . 160

8.5 Frequency domain interpretation of LPC analysis . 166

8.6 Applications of LPC . 171

9 Wiener filtering . 173

9.1 Problem formulation . 173

9.2 Wiener-Hopf equations . 174

9.3 Non-causal Wiener filter solution . 176

9.4 Causal Wiener filter solution . 177

Part I

Fundamentals of Digital Signal Processing

1

Introduction to the Discrete Fourier Transform

This chapter introduces the Discrete Fourier Transform (DFT). Before we get started
on the DFT, let’s look for a moment at the Fourier transform (FT) and explain why we
are not talking about it instead. The Fourier transform of a continuous-time signal x(t)
may be defined as

X(ω) ,
∫ +∞

−∞
x(t)e−jωtdt, ω ∈ (−∞,+∞). (1.1)

Thus, we need calculus. The DFT, on the other hand, replaces the infinite integral with
a finite sum:

X(ωk) ,
N−1∑
n=0

x(tn)e−jωktn , k = 0, 1, 2, . . . , N − 1, (1.2)

where the various quantities in this formula are defined on the next page. Calculus is
not needed to define the DFT (or its inverse, as we will see), and with finite summation
limits, we cannot encounter difficulties with infinities (provided that x(tn) is finite, which
is always true in practice). Moreover, in the field of digital signal processing, signals and
spectra are processed only in sampled form, so that the DFT is what we really need
anyway (implemented using the FFT - Fast Fourier Transform - when possible). In
summary, the DFT is simpler mathematically, and more relevant computationally than
the Fourier transform. At the same time, the basic concepts are the same.

1.1 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) of a signal may be defined by:

X(ωk) ,
N−1∑
n=0

x(tn)e−jωktn , k = 0, 1, 2, . . . , N − 1, (1.3)

4 1 Introduction to the Discrete Fourier Transform

where , means ”is defined as” or ”equals by definition”

N−1∑
n=0

f(n) , f(0) + f(1) + . . .+ f(N − 1)

x(tn) , input signal amplitude (real or complex) at time tn (sec)

tn , nT = nth sampling instant (sec), n an integer ≥ 0

T , sampling interval (sec)

X(ωk) , spectrum of x (complex valued), at frequency ωk

ωk , kΩ = kth frequency sample (radians per second)

Ω ,
2π
NT

= radian-frequency sampling interval (rad/sec)

fs , 1/T = sampling rate (samples/sec, or Hertz (Hz))

N = number of time samples = no. frequency samples (integer).

The sampling interval is also called the sampling period.

When all N signal samples x(tn) are real, we say x ∈ RN . If they may be complex,
we write x ∈ CN . Finally, n ∈ Z means n is an integer.

1.2 Inverse Discrete Fourier Transform

The inverse DFT (the IDFT) is given by

x(tn) =
1
N

N−1∑
k=0

X(ωk)ejωktn , n = 0, 1, 2, . . . , N − 1, (1.4)

1.3 Mathematics of the DFT

In the signal processing literature, it is common to write the DFT and its inverse in the
more pure form below, obtained by setting T = 1 in the previous definition:

X(k) ,
N−1∑
n=0

x(n)e−j2πnk/N , k = 0, 1, 2, . . . , N − 1, (1.5)

x(n) =
1
N

N−1∑
k=0

X(k)ej2πnk/N , n = 0, 1, 2, . . . , N − 1, (1.6)

1.4 Derivation of the Discrete Fourier Transform 5

where x(n) denotes the input signal at time (sample) n, and X(k) denotes the kth
spectral sample. This form is the simplest mathematically, while the previous form is
easier to interpret physically.

Recall the Euler’s Identity:

ejθ = cos(θ) + j sin(θ). (1.7)

Euler’s Identity is the key to understanding the meaning of expressions like

sk(tn) , ejωktn = cos(ωktn) + j sin(ωktn). (1.8)

Such expression defines a sampled complex sinusoid.

Finally, we need to understand what the summation over n is doing in the definition
of the DFT. This can be interpreted as the computation of the inner product of the
signals x and sk defined above, so that we may write the DFT, using inner-product
notation, as

X(k) , 〈x, sk〉, (1.9)

where sk(n) = ej2πnk/N is the sampled complex sinusoid at (normalized) radian fre-
quency ωk = 2πk/N , and the inner product operation 〈·, ·〉 is defined by

〈x, y〉 ,
N−1∑
n=0

x(n)ȳ(n). (1.10)

The inner product of x with the kth basis sinusoid sk is a measure of ”how much” of sk

is present in x and at ”what phase” (since it is a complex number).

Listing 1.1. Matlab

x = [−20 :20] ;
N = length (x) ;

omega = 2∗ pi ∗ [0 :N−1]/N;

X = f f t (x) ;

subplot (2 , 1 , 1) ; p l o t (omega , abs (X)) ;
subplot (2 , 1 , 2) ; p l o t (omega , angle (X)) ;

y = i f f t (X) ;

1.4 Derivation of the Discrete Fourier Transform

Geometric series

Recall that for any complex number z1 ∈ C, the signal

6 1 Introduction to the Discrete Fourier Transform

x(n) , zn
1 , n = 0, 1, 2, . . . , (1.11)

defines a geometric sequence, i.e. each term is obtained by multiplying the previous term
by a (complex) constant. A geometric series is the sum of a geometric sequence:

SN (z1) ,
N−1∑
n=0

zn
1 = 1 + z1 + z2

1 + z3
1 + . . .+ zN−1

1 (1.12)

If z1 6= 1, the sum can be expressed in closed form

SN (z1) =
1− zN

1

1− z1
(z1 6= 1) (1.13)

Orthogonality of sinusoids

A key property of sinusoids is that they are orthogonal at different frequencies. That is,

ω1 6= ω2 ⇒ A1 sin(ω1t+ φ1) ⊥ A2 sin(ω2t+ φ2). (1.14)

This is true whether they are complex or real, and whatever amplitude and phase they
may have. All that matters is that the frequencies be different. Note, however, that the
sinusoidal durations must be infinity.

For length N sampled sinusoidal signal segments, such as used by the DFT, exact
orthogonality holds only for the harmonics of the sampling-rate-divided-by-N , i.e., only
for the frequencies

ωk = 2πk
fs

N
, k = 0, 1, 2, . . . , N − 1. (1.15)

These are the only frequencies that have a whole number of periods in samples.

The complex sinusoids corresponding to the frequencies ωk are

sk(n) , ejωknT , ωk , k
2π
N
fs, k = 0, 1, 2, . . . , N − 1. (1.16)

Figure 1.1 shows the sampled sinusoids (W k
N)n = ej2πkn/N = ejωknT used by the

DFT. Note that taking successively higher integer powers of the point W k
N on the unit

circle generates samples of the kth DFT sinusoid, giving [W k
N]n, n = 0, 1, 2, . . . , N − 1.

The kth sinusoid generator W k
N is in turn the kth Nth root of unity (kth power of the

primitive Nth root of unity WN).

Note that in Figure 1.1 the range of k is taken to be [−N/2, N/2 − 1] = [−4, 3]
instead of [0, N − 1] = [0, 7]. This is the most physical choice since it corresponds with
our notion of ”negative frequencies”. However, we may add any integer multiple of N
to k without changing the sinusoid indexed by k. In other words, k ±mN refers to the
same sinusoid ejωknT for all integers m.

1.4 Derivation of the Discrete Fourier Transform 7

0 2 4 6 8
−1

0
1

Real part

k
=

 3

0 2 4 6 8
−1

0
1

Imaginary part

0 2 4 6 8
−1

0
1

k
=

 2
0 2 4 6 8

−1
0
1

0 2 4 6 8
−1

0
1

k
=

 1

0 2 4 6 8
−1

0
1

0 2 4 6 8
0
1
2

k
=

 0

0 2 4 6 8
−1

0
1

0 2 4 6 8
−1

0
1

k
=

 −
1

0 2 4 6 8
−1

0
1

0 2 4 6 8
−1

0
1

k
=

 −
2

0 2 4 6 8
−1

0
1

0 2 4 6 8
−1

0
1

k
=

 −
3

0 2 4 6 8
−1

0
1

0 2 4 6 8
−1

0
1

k
=

 −
4

0 2 4 6 8
−1

0
1

Fig. 1.1. DFT sinusoids, for N = 8

Orthogonality of the DFT sinusoids

We now show mathematically that the DFT sinusoids are exactly orthogonal. Let

sk(n) , ejωknT = ej2πkn/N = [W k
N]n, n = 0, 1, 2, . . . , N − 1 (1.17)

denote the kth complex DFT sinusoid. Then

〈sk, sl〉 ,
N−1∑
n=0

sk(n)s̄l(n) =
N−1∑
n=0

ej2πkn/Ne−j2πln/N =

=
N−1∑
n=0

ej2π(k−l)n/N =
1− ej2π(k−l)

1− ej2π(k−l)/N
(1.18)

where the last step made use of the closed-form expression for the sum of a geometric
series. If k 6= l, the denominator is nonzero while the numerator is zero. This proves

sk ⊥ sl, k 6= l (1.19)

While we only looked at unit amplitude, zero phase complex sinusoids, as used by the
DFT, it is readily verified that the (nonzero) amplitude and phase have no effect on
orthogonality.

8 1 Introduction to the Discrete Fourier Transform

Norm of the DFT sinusoids

For k = l, we follow the previous derivation to the next-to-last step to get

〈sk, sk〉 =
N−1∑
n=0

ej2π(k−k)n/N = N (1.20)

which proves
‖sk‖ =

√
N (1.21)

The Discrete Fourier Transform (DFT)

Given a signal x(·) ∈ CN , its DFT is defined by

X(ωk) , 〈x, sk〉 =
N−1∑
n=0

x(n)s̄k(n), sk(n) , ejωknT , ωk , 2π
k

N
fs, k = 0, 1, 2, . . . , N−1,

(1.22)
or, as it is most often written

X(ωk) ,
N−1∑
n=0

x(n)e−j 2πkn
N , k = 0, 1, 2, . . . , N − 1. (1.23)

We may also refer to X as the spectrum of x, and X(ωk) is the kth sample of the
spectrum at frequency ωk.

Given two vectors x and y, the projection of x onto y is defined as

Py(x) =
〈x, y〉
‖y‖2

y (1.24)

where 〈x,y〉
‖y‖2 is the coefficient of projection. The kth sample X(ωk) of the spectrum of x

is defined as the inner product of x with the kth DFT sinusoid sk. This definition is N
times the coefficient of projection of x onto sk, i.e.,

〈x, sk〉
‖sk‖2

=
X(ωk)
N

(1.25)

The projection of x onto sk is

Psk
(x) =

X(ωk)
N

sk (1.26)

Since the {sk} are orthogonal and span CN , we have that the inverse DFT is given by
the sum of projections

1.5 Frequencies in the “cracks” 9

x =
N−1∑
k=0

X(ωk)
N

sk (1.27)

or, as we normally write,

x(n) =
1
N

N−1∑
k=0

X(ωk)ej 2πkn
N (1.28)

In summary, the DFT is proportional to the set of coefficients of projection onto
the sinusoidal basis set, and the inverse DFT is the reconstruction of the original signal
as a superposition of its sinusoidal projections. This basic “architecture” extends to
all linear orthogonal transforms, including wavelets, Fourier transforms, Fourier series,
the discrete-time Fourier transform (DTFT), and certain short-time Fourier transforms
(STFT).

1.5 Frequencies in the “cracks”

The DFT is defined only for frequencies ωk = 2πkfs/N . If we are analyzing one or more
periods of an exactly periodic signal, where the period is exactly N samples (or some
integer divisor of N), then these really are the only frequencies present in the signal,
and the spectrum is actually zero everywhere but at ω = ωk, k ∈ [0, N−1]. However, we
use the DFT to analyze arbitrary signals from nature. What happens when a frequency
ω is present in a signal x that is not one of the DFT-sinusoid frequencies ωk?

To find out, let’s project a length N segment of a sinusoid at an arbitrary frequency
ω onto the kth DFT sinusoid:

x(n) , ejωnT

sk(n) , ejωknT

Psk
(x) =

〈x, sk〉
〈sk, sk〉

sk ,
X(ωk)
N

sk (1.29)

The coefficient of projection is proportional to

X(ωk) , 〈x, sk〉 ,
N−1∑
n=0

x(n)s̄k(n) =

=
N−1∑
n=0

ejωnT e−jωknT =
N−1∑
n=0

ej(ω−ωk)nT =
1− ej(ω−ωk)NT

1− ej(ω−ωk)T

= ej(ω−ωk)(N−1)T/2 sin[(ω − ωk)NT/2]
sin[(ω − ωk)T/2]

, (1.30)

10 1 Introduction to the Discrete Fourier Transform

0 1 2 3 4 5 6
0

5

10

15

DFT amplified response at k = N/4

M
ag

ni
tu

de
 (

lin
ea

r)

Normalized radian frequency (radians per sample)

0 1 2 3 4 5 6
−60

−40

−20

0

20

40

M
ag

ni
tu

de
 (

dB
)

Normalized radian frequency (radians per sample)

Fig. 1.2. Frequency response magnitude of a single DFT output sample

using the closed-form expression for a geometric series sum. The sum is N at ω = ωk

and zero at ωl, for l 6= k. However, the sum is nonzero at all other frequencies.

The typical way to think about this in practice is to consider the DFT operation as
a digital filter. The frequency response of this filter is what we just computed, and its
magnitude is

|X(ωk)| =
∣∣∣∣ sin[(ω − ωk)NT/2]

sin[(ω − ωk)T/2]

∣∣∣∣ (1.31)

At all other integer values of k (see Figure 1.2), the frequency response is the same
but shifted (circularly) left or right so that the peak is centered on ωk. The secondary
peaks away from ωk are called sidelobes of the DFT response, while the main peak
may be called the main lobe of the response. Since we are normally most interested in
spectra from an audio perspective, the same plot is repeated using a decibel vertical
scale in Figure 1.2 (clipped at -60dB). We see that the sidelobes are really quite high
from an audio perspective. Sinusoids with frequencies near ωk±1.5, for example, are only
attenuated approximately 13dB in the DFT output X(ωk).

We see that X(ωk) is sensitive to all frequencies between dc and the sampling rate
except the other DFT-sinusoid frequencies ωl for l 6= k. This is sometimes called spectral

1.5 Frequencies in the “cracks” 11

leakage or cross-talk in the spectrum analysis. Again, there is no error when the signal
being analyzed is truly periodic and we can choose to be exactly a period, or some
multiple of a period. Normally, however, this cannot be easily arranged, and spectral
leakage can be a problem.

Note that peak spectral leakage is not reduced by increasing N . It can be thought of
as being caused by abruptly truncating a sinusoid at the beginning and/or end of the N -
sample time window. Only the DFT sinusoids are not cut off at the window boundaries.
All other frequencies will suffer some truncation distortion, and the spectral content of
the abrupt cut-off or turn-on transient can be viewed as the source of the sidelobes.
Remember that, as far as the DFT is concerned, the input signal x(n) is the same as
its periodic extension. If we repeat samples of a sinusoid at frequency ω 6= ωk (for any
k ∈ Z), there will be a “glitch” every N samples since the signal is not periodic in N

samples. This glitch can be considered a source of new energy over the entire spectrum.

To reduce spectral leakage (cross-talk from far-away frequencies), we typically use a
window function, such as a “raised cosine” window, to taper the data record gracefully
to zero at both endpoints of the window. As a result of the smooth tapering, the main
lobe widens and the sidelobes decrease in the DFT response. Using no window is better
viewed as using a rectangular window of length N , unless the signal is exactly periodic
in N samples.

Since the kth spectral sample X(ωk) is properly regarded as a measure of spectral
amplitude over a range of frequencies, nominally k− 1/2 to k+ 1/2, this range is some-
times called a frequency bin (as in a “storage bin” for spectral energy). The frequency
index k is called the bin number, and can be regarded as the total energy in the kth bin.

In the very special case of truly periodic signals x(t) = x(t + NT), for all t ∈
(−∞,+∞), the DFT may be regarded as computing the Fourier series coefficients of
x(n) from one period of its sampled representation x(nT), n = 0, 1, , . . . , N − 1. The
period of x must be exactly NT seconds for this to work.

Listing 1.2. Matlab

T = 1;

N = 1000; t = 0 :T: (N−1)∗T;

K = 10;
%sp e c t r a l l eakage occurs i f K i s not i n t e g e r
%K = 10 . 5 ;
f = K∗(1/(N∗T)) ;

x = s in (2∗ pi∗ f ∗ t) ;

X = f f t (x) ; omega = 2∗ pi ∗ [0 :N−1]/N;

subplot (2 ,1 , 1)
p lo t (x)
subplot (2 , 1 , 2)
p lo t (omega , 10∗ log10 (abs (X) . ˆ 2)) ;

12 1 Introduction to the Discrete Fourier Transform

1.6 Matrix Formulation of the DFT

The DFT can be formulated as a complex matrix multiply, as we show in this section.

The DFT consists of inner products of the input signal x with sampled complex
sinusoidal sections sk:

X(ωk) , 〈x, sk〉 ,
N−1∑
n=0

x(tn)e−j2πkn/N , k = 0, 1, 2, . . . , N − 1, (1.32)

By collecting the DFT output samples into a column vector, we have

X(ω0)
X(ω1)
X(ω2)

...
X(ωN−1)

=

s0(0) s0(1) · · · s0(N − 1)
s1(0) s1(1) · · · s1(N − 1)
s2(0) s2(1) · · · s2(N − 1)

...
...

. . .
...

sN−1(0) sN−1(1) · · · sN−1(N − 1)

x(0)
x(1)
x(2)

...
x(N − 1)

(1.33)

or
X = SNx (1.34)

where SN denotes the DFT matrix SN , W−kn
N , e−j2πkn/N , i.e.

SN =

1 1 1 · · · 1
1 e−j2π/N e−j4π/N · · · e−j2π(N−1)/N

1 e−j4π/N e−j8π/N · · · e−j2π2(N−1)/N

...
...

...
...

...
1 e−j2π(N−1)/N e−j2π2(N−1)/N · · · e−j2π(N−1)(N−1)/N

(1.35)

We see that the kth row of the DFT matrix is the kth DFT sinusoid. Since the matrix
is symmetric, ST

N = SN (where transposition does not include conjugation), we observe
that the kth column of SN is also the kth DFT sinusoid.

The inverse DFT matrix is simply S̄N/N . That is, we can perform the inverse DFT
operation as

x =
1
N

S∗NX (1.36)

where A∗ , ĀT denotes the Hermitian transpose of the complex matrix A (transposition
and complex conjugation). Since X = SNx, the above implies

S∗NSN = N · I. (1.37)

The above equation succinctly implies that the columns of SN are orthogonal, which, of
course, we already knew.

1.7 Fourier Theorems for the DFT 13

1.7 Fourier Theorems for the DFT

The DFT and its inverse restated

Let x(n), n = 0, 1, 2, . . . , N − 1, denote the N -sample complex sequence, i.e. x ∈ CN .
Then the spectrum of x is defined by the Discrete Fourier Transform (DFT)

X(k) ,
N−1∑
n=0

x(n)e−j2πkn/N , k = 0, 1, 2, . . . , N − 1. (1.38)

The Inverse DFT (IDFT) is defined by

x(n) =
N−1∑
n=0

X(k)ej2πkn/N , n = 0, 1, 2, . . . , N − 1. (1.39)

In this section, we will omit mention of an explicit sampling interval T = 1/fs, as is
most typical in the digital signal processing literature. It is often said that the sampling
frequency is fs = 1. In this case, a radian frequency ωk = 2πk/N is in units of “radians
per sample.” Another term we use in connection with the fs = 1 convention is normalized
frequency. All normalized radian frequencies lie in the range [−π,+π), and all normalized
frequencies in cycles/sample lie in the range [−0.5,+0.5). Note that physical units of
seconds and Herz can be reintroduced by the substitution

ej2πnk/N = ej2πk(fs/N)nT = eωktn . (1.40)

Notation and terminology

If X is the DFT of x, we say that x and X form a transform pair and write

x↔ X (“x corresponds to X”) (1.41)

Another notation we will use is
DFT (x) , X, (1.42)

DFTk(x) , X(k), (1.43)

If we need to indicate the length of the DFT explicitly we write DFTN (x) = X and
DFTN,k = X(k).

14 1 Introduction to the Discrete Fourier Transform

Modulo indexing, periodic extension

The DFT sinusoids sk(n) = ejωkn are all periodic having periods which divide N . That
is, sk(n+mN) = sk(n) for any integer m.

Since a length N signal x can be expressed as a linear combination of the DFT
sinusoids in the time domain,

x(n) =
1
N

∑
k

X(k)sk(n), (1.44)

it follows that the “automatic” definition of x(n) beyond the range [0, N − 1] is periodic
extension, i.e., x(n+mN) = x(n) for every integer m.

Moreover, the DFT also repeats naturally every N samples, since

X(k +mN) , 〈x, sk+mN 〉 = 〈x, sk〉 = X(k) (1.45)

because sk+mN (n) = ej2πn(k+mN)/N = ej2πnk/Nej2πnm = ej2πnk/N = sk(n). Accord-
ingly, for purposes of DFT studies, we may define all signals in CN as being single
periods from an infinitely long periodic signal with period N samples:

For any signal x ∈ CN , we define

x(n+mN) , x(n) (1.46)

for every integer m.

As a result of this convention, all indexing of signals and spectra can be inter-
preted modulo N , and we may write x(n(mod N)) to emphasize this. Formally, “n(
mod (N))” is defined as n−mN with m chosen to give n−mN in the range [0, N − 1].

As an example, when indexing a spectrum X, we have that X(N) = X(0) which can
be interpreted physically as saying that the sampling rate is the same frequency as dc for
discrete time signals. Periodic extension in the time domain implies that the signal input
to the DFT is mathematically treated as being samples of one period of a periodic signal,
with the period being exactly NT seconds (N samples). The corresponding assumption
in the frequency domain is that the spectrum is exactly zero between frequency samples
ωk. It is also possible to adopt the point of view that the time-domain signal x(n)
consists of samples preceded and followed by zeros. In that case, the spectrum would
be nonzero between spectral samples ωk, and the spectrum between samples would be
reconstructed by means of bandlimited interpolation.

1.7 Fourier Theorems for the DFT 15

Signal operators

Flip operator

FLIPn(x) , x(−n) (1.47)

which, by modulo indexing is also x(N − n)

Shift operator

SHIFT∆,n(x) , x(n−∆), ∆ ∈ Z (1.48)

Note that since indexing is modulo N , the shift is circular (or cyclic). We often use the
shift operator in conjunction with zero padding (appending zeros to the signal) in order
to avoid the “wrap-around” associated with a circular shift.

Convolution

(x ∗ y)n ,
N−1∑
m=0

x(m)y(n−m) (1.49)

Note that this is circular convolution (or cyclic convolution).

Convolution is commutative, i.e. x ∗ y = y ∗ x.

Note that the cyclic convolution operation can be expressed in terms of the previously
defined operators as

y(n) =
M−1∑
m=0

x(m)h(n−m) = 〈x, SHIFTn(FLIP(h))〉 h real) (1.50)

We may interpret h as the impulse response of a digital filter. It is instructive to
interpret the notation graphically (see Figure 1.3).

Correlation

(x ? y)n ,
N−1∑
m=0

x̄(m)y(m+ n) (1.51)

16 1 Introduction to the Discrete Fourier Transform

Fig. 1.3. Illustration of convolution of y = [1, 1, 1, 1, 0, 0, 0, 0] and h = [1, 0, 0, 0, 0, 1, 1, 1]

Zero padding

Zero padding consists of extending a signal (or spectrum) with zeros to extend its time
(or frequency band) limits. It maps a length N signal to a length M > N signal, but M
need not be an integer multiple of N . To unify the time-domain and frequency-domain
definitions of zero-padding, it is necessary to regard the original time axis as indexing
positive-time samples from 0 to N/2−1 (for N even), and negative times in the interval
n ∈ [N−N/2+1, N−1] = [−N/2+1,−1]. Furthermore, we require x(N/2) = x(−N/2)
when N is even, while N odd requires no such restriction.

ZEROPADM,m ,

{
x(m), |m| < N/2
0, otherwise

(1.52)

where m = 0,±1,±2, . . . ,±Mh, with Mh , (M − 1)/2 for M odd, and M/2− 1 for M
even.

When a signal x(n) is causal, that is, x(n) = 0 for all negative samples, then zero-
padding can be carried out by simply appending zeros to the original signal, for example

ZEROPAD10([1, 2, 3, 4, 5]) = [1, 2, 3, 4, 5, 0, 0, 0, 0, 0] causal case (1.53)

The Fourier theorems

Linearity

For any x, y ∈ CN and α, β ∈ C, the DFT satisfies

1.7 Fourier Theorems for the DFT 17

Fig. 1.4. Illustration of zero padding a) Original signal (or spectrum) plotted over the do-
main n ∈ [0, N − 1]. b) ZEROPAD11(x). c) The same signal x plotted over the domain
n ∈ [−(N−1)/2, (N−1)/2] which is more natural for interpreting negative times (frequencies).
d) ZEROPAD11(x) plotted over the zero-centered domain

αx+ βy ↔ αX + βY (1.54)

Thus the DFT is a linear operator.

Conjugation and reversal

For any x ∈ CN

x̄↔ FLIP(X̄) (1.55)

FLIP(x̄)↔ X̄ (1.56)

For any x ∈ RN

FLIP(x)↔ X̄ (1.57)

Thus, conjugation in the frequency domain corresponds to reversal in the time domain.
Another way to say it is that negating spectral phase flips the signal around backwards
in time.

FLIP(X) = X̄ (1.58)

The property X(−k) = X̄(k) is called Hermitian symmetry or “conjugate symme-
try”.

x ∈ RN ↔ X is Hermitian (1.59)

18 1 Introduction to the Discrete Fourier Transform

Symmetry

In the previous section we found FLIP(X) = X̄ when x is real. This fact is of high
practical importance. Due to this symmetry, we may discard all negative-frequency
spectral samples of a real signal and regenerate them later if needed from the positive-
frequency samples. Also, spectral plots of real signals are normally displayed only for
positive frequencies; e.g., spectra of sampled signals are normally plotted over the range
0 Hz to fs/2 Hz. On the other hand, the spectrum of a complex signal must be shown, in
general, from −f2/2 to fs/2 (or from 0 to fs), since the positive and negative frequency
components of a complex signal are independent.

If x ∈ RN , then re{X} is even and im{X} is odd.

If x ∈ RN , then |X| is even and ∠X is odd.

A real even signal has a real even transform:

x real and even↔ X real and even (1.60)

A signal with a real spectrum (such as any real, even signal) is often called a zero
phase signal. However, note that when the spectrum goes negative (which it can), the
phase is really ±π, not 0. We can say that all real spectra are piecewise constant-phase
spectra, where the two constant values are 0 and ±π.

Shift theorem

For any x ∈ CN and any integer ∆,

DFTk[SHIFT∆(x)] = DFTk[x(n−∆)] = e−jωk∆X(k) (1.61)

The shift theorem says that a delay in the time domain corresponds to a linear phase
term in the frequency domain. Note that spectral magnitude is unaffected by a linear
phase term.

The reason ejωk∆ is called a linear phase term is that its phase is a linear function
of frequency.

∠e−jωk∆ = −∆ωk (1.62)

Thus, the slope of the phase, viewed as a linear function of radian-frequency ωk, is −∆.

A positive time delay (waveform shift to the right) adds a negatively sloped linear
phase to the original spectral phase. A negative time delay (waveform shift to the left)
adds a positively sloped linear phase to the original spectral phase.

1.7 Fourier Theorems for the DFT 19

A signal is said to be a linear phase signal if its phase is of the form

Θ(ωk) = ±∆ · ωk ± πI(ωk), (1.63)

where I(ωk) is an indicator function which takes on values 0 or 1 over the points ωk, k =
0, 1, 2, . . . , N − 1.

A zero-phase signal is thus a linear phase signal for which the phase-slope ∆ is zero.

Convolution theorem

For any x, y ∈ CN

x ∗ y ↔ X · Y (1.64)

DFTk(x ∗ y) ,
N−1∑
n=0

(x ∗ y)ne
−j2πnk/N

=
N−1∑
n=0

N−1∑
m=0

x(m)y(n−m)e−j2πnk/N

=
N−1∑
m=0

x(m)
N−1∑
n=0

y(n−m)e−j2πnk/N

=
N−1∑
m=0

x(m)
(
e−j2πmk/NY (k)

)
by the shift theorem

=

(
N−1∑
n=0

x(m)e−j2πmk/N

)
Y (k) , X(k)Y (k) (1.65)

This is perhaps the most important single Fourier theorem of all. It is the basis
of a large number of applications of the FFT. Since the FFT provides a fast Fourier
transform, it also provides fast convolution, thanks to the convolution theorem. It turns
out that using the FFT to perform convolution is really more efficient in practice only
for reasonably long convolutions, such as N > 100. For much longer convolutions, the
savings become enormous compared with “direct” convolution. This happens because
direct convolution requires on the order of N2 operations (multiplications and addi-
tions), while FFT-based convolution requires on the order of N lgN operations, where
lg denotes the logarithm-base-2 of N .

The dual of the convolution theorem says that multiplication in the time domain is
convolution in the frequency domain:

20 1 Introduction to the Discrete Fourier Transform

x · y ↔ 1
N
X ∗ Y (1.66)

where convolution at the right hand side is the cyclic convolution, since X and Y are
periodic with period equal to N samples. This theorem also bears on the use of FFT
windows. It implies that windowing in the time domain corresponds to smoothing in the
frequency domain. That is, the spectrum of w · x is simply X filtered by W , or, W ∗ Y .
This smoothing reduces sidelobes associated with the rectangular window (which is the
window one gets implicitly when no window is explicitly used).

Correlation theorem

For any x, y ∈ CN

x ? y ↔ X̄ · Y (1.67)

Power theorem

For any x, y ∈ CN

〈x, y〉 =
1
N
〈X,Y 〉 (1.68)

Proof:

〈x, y〉 ,
N−1∑
n=0

x(n)ȳ(n) = (x ? y)0 = DFT−1
0 (Ȳ ·X) =

1
N

N−1∑
k=0

X(k)Ȳ (k) ,
1
N
〈X,Y 〉

(1.69)

Rayleigh energy theorem (Parseval theorem)

For any x ∈ CN

‖x‖2 =
1
N
‖X‖2 (1.70)

i.e.
N−1∑
n=0

|x(n)|2 =
1
N

N−1∑
k=0

|X(k)|2 (1.71)

1.8 Fourier transforms for Continuous/Discrete Time/Frequency 21

1.8 Fourier transforms for Continuous/Discrete Time/Frequency

The Fourier transform can be defined for signals which are

• discrete or continuous in time, and

• finite or infinite in duration.

This results in four cases. Quite naturally, the frequency domain has the same four
cases,

• discrete or continuous in frequency,

• finite or infinite in bandwidth.

When time is discrete, the frequency axis is finite, and vice versa. Table 1.1 summarizes
all four Fourier-transform cases corresponding to discrete or continuous time and/or
frequency.

Time duration . .
Finite Infinite

Discrete FT (DFT) Discrete Time FT (DTFT) discr.
X(k) =

∑N−1
n=0 x(n)e−jωkn X(ω) =

∑+∞
−∞ x(n)e−jωn time

k = 0, 1, . . . , N − 1 ω ∈ [−π,+π) t
Fourier Series (FS) Fourier Transform (FT) cont.

X(k) = 1
P

∫ +∞
−∞ x(t)e−jωktdt X(ω) =

∫ +∞
−∞ x(t)e−jωtdt time

k = −∞, . . . ,+∞ ω ∈ (−∞,+∞) t
discrete freq. k continuous freq. ω

Table 1.1. Four cases of the sampled/continuous time and frequency

Discrete Time Fourier Transform (DTFT)

The Discrete Time Fourier Transform (DTFT) can be viewed as the limiting form of
the DFT when its length N is allowed to approach infinity:

X(ω) =
+∞∑
−∞

x(n)e−jωn (1.72)

where ω ∈ [−π,+π) denotes the continuous radian frequency variable, and x(n) is the
signal amplitude at sample number n.

22 1 Introduction to the Discrete Fourier Transform

The inverse DTFT is

x(n) =
1
2π

∫ +∞

−∞
X(ω)ejωndω (1.73)

Instead of operating on sampled signals of length N (like the DFT), the DTFT oper-
ates on sampled signals x(n) defined over all integers n ∈ Z. As a result, the DTFT
frequencies form a continuum. That is, the DTFT is a function of continuous frequency
ω ∈ [−π,+π), while the DFT is a function of discrete frequency ωk, k ∈ [0, N − 1]. The
DFT frequencies ωk = 2πk/N , k = 0, 1, 2, . . . , N−1, are given by the angles of N points
uniformly distributed along the unit circle in the complex plane. Thus, as N → ∞, a
continuous frequency axis must result in the limit along the unit circle in the z plane.
The axis is still finite in length, however, because the time domain remains sampled.

References

• Smith, J.O. Mathematics of the Discrete Fourier Transform (DFT), 2003, ISBN 0-
9745607-0-7,

http://ccrma.stanford.edu/~jos/mdft/

2

Introduction to digital filters

In this chapter, the important concepts of linearity and time-invariance (LTI) are dis-
cussed. The great majority of audio filters are LTI, for several reasons: first, no new
spectral components are introduced by LTI filters. Time-varying filters, on the other
hand, can generate audible sideband images of the frequencies present in the input
signal (when they vary at audio rates). Time-invariance is not overly restrictive, how-
ever, because the static analysis holds very well for filters that change slowly with time.
(One rule of thumb is that a filter’s coefficients should be substantially constant over
its impulse-response duration.) Nonlinear filters create new sinusoidal components at all
sums and differences of the frequencies present in the input signa. This includes both
harmonic distortion (when the input signal is periodic) and intermodulation distortion
(when at least two inharmonically related tones are present). A truly linear filter does
not cause harmonic or intermodulation distortion.

In the following sections, linearity and time-invariance will be formally introduced,
together with some elementary mathematical aspects of signals.

2.1 Digital filters

A real digital filter Tn is defined as any real-valued function of a signal for each integer
n.

Thus, a real digital filter maps every real, discrete-time signal to a real, discrete-time
signal. A complex filter, on the other hand, may produce a complex output signal even
when its input signal is real.

We may express the input-output relation of a digital filter by the notation

y(n) = Tn{x(·)} (2.1)

24 2 Introduction to digital filters

Linear filters

A filter Ln is said to be linear if for any pair of signals x1(·), x2(·) and for all constant
gains g, we have

Scaling : Ln{gx1(·)} = gLn{x1(·)} (2.2)

Superposition : Ln{x1(·) + x2(·)} = Ln{x1(·)}+ Ln{x2(·)} (2.3)

The scaling property of linear systems states that scaling the input of a linear system
(multiplying it by a constant gain factor) scales the output by the same factor. The
superposition property of linear systems states that the response of a linear system to
a sum of signals is the sum of the responses to each individual input signal. Another
view is that the individual signals which have been summed at the input are processed
independently inside the filter. They superimpose and do not interact. (The addition
of two signals, sample by sample, is like converting stereo to mono by mixing the two
channels together equally.)

Another example of a linear signal medium is the earth’s atmosphere. When two
sounds are in the air at once, the air pressure fluctuations that convey them simply add
(unless they are extremely loud). Since any finite continuous signal can be represented
as a sum (i.e., superposition) of sinusoids, we can predict the filter response to any input
signal just by knowing the response for all sinusoids. Without superposition, we have no
such general description and it may be impossible to do any better than to catalog the
filter output for each possible input.

Time invariant filters

In plain terms, a time-invariant filter (or shift-invariant filter) is one which performs the
same operation at all times. What we want to say is that if the input signal is delayed
(shifted) by, say, N samples, then the output waveform is simply delayed by N samples
and unchanged otherwise. Thus y(·), the output waveform from a time-invariant filter,
merely shifts forward or backward in time as the input waveform x(·) is shifted forward
or backward in time.

A filter Ln is said to be time-invariant if

Ln{SHIFTN{x}} = Ln−N{x(·)} = y(n−N) = SHIFTN,n{y} (2.4)

In the rest of these notes, all filters discussed will be linear and time-invariant. For
brevity, these will be referred to as LTI filters.

2.2 Time domain filter representations 25

2.2 Time domain filter representations

Difference equation

The difference equation is a formula for computing an output sample at time n based on
past and present input samples and past output samples in the time domain. We may
write the general LTI difference equation as follows:

y(n) = b0x(n) + b1x(n− 1) + . . .+ bMx(n−M)

− a1y(n− 1)− . . .− aNy(n−N)

(2.5)

y(n) =
M∑
i=0

bix(n− i)−
N∑

j=1

ajy(n− j) (2.6)

where x is the input signal, y is the output signal, and the constants bi, i = 0, 1, 2, . . . ,M ,
aj , j = 1, 2, . . . , N are the filter coefficients.

Notice that a filter of the form of (2.6) can use “past” output samples (such as y(n−1)
in the calculation of the “present” output y(n). This use of past output samples is called
feedback. Any filter having one or more feedback paths (N > 0) is called recursive.

A filter is said to be recursive if and only if ai 6= 0 for some i > 0. Recursive
filters are also called infinite-impulse-response (IIR) filters. When there is no feedback
(ai = 0,∀i > 0), the filters is said to be a nonrecursive or finite-impulse-response (FIR)
digital filter.

Listing 2.1. Matlab

N = 1000;

%a (1)∗y(n) = −a (2) y (n − 1) + b (1) x (n) + b (2) x (n − 1) ;
b = [1 1] ;
a = [1 −0.9] ;

x = randn (N, 1) ;
y = f i l t e r (b , a , x) ;

Signal flow graph

One possible signal flow graph (or system diagram) for (2.6) is given in Figure 2.1 for
the case of M = 2 and N = 2. Hopefully, it is easy to see how this diagram represents
the difference equation (a box labeled “z−1” denotes a one-sample delay in time).

26 2 Introduction to digital filters

Fig. 2.1. System diagram for the filter difference equation y(n) = b0x(n)+b1x(n−1)−a1y(n−
1)− a2y(n− 2). (a) Direct form I. (b) Direct form II

Causal recursive filters

Equation (2.6) does not cover all LTI filters, for it represents only causal LTI filters. A
filter is said to be causal when its output does not depend on any “future” inputs.

For example, y(n) = x(n + 1) is a non-causal filter because the output anticipates
the input one sample into the future. Restriction to causal filters is quite natural when
the filter operates in real time. Many digital filters, on the other hand, are implemented
on a computer where time is artificially represented by an array index. Thus, noncausal
filters present no difficulty in such an “off-line” situation. It happens that the analysis
for noncausal filters is pretty much the same as that for causal filters, so we can easily
relax this restriction.

Filter order

The maximum delay, in samples, used in creating each output sample is called the order
of the filter. In the difference-equation representation, the order is the larger of M and
N in (2.6).

2.2 Time domain filter representations 27

Impulse response representation

In addition to difference-equation coefficients, any LTI filter may be represented in the
time domain by its response to a specific signal called the impulse. This response is called,
naturally enough, the impulse response of the filter. Any LTI filter can be implemented
by convolving the input signal with the filter impulse response.

The impulse signal is denoted δ(n) and defined by

δ(n) =

{
1, n = 0
0, n 6= 0

(2.7)

The impulse response of a filter is the response of the filter to δ(n) and it is most
often denoted h(n)

h(n) , Ln{δ(·)} (2.8)

A filter is said to be stable is the impulse response h(n) approaches zero as n goes
to infinity.

Every finite-order nonrecursive filter is stable. Only the feedback coefficients aj in
(2.6) can cause instability.

Listing 2.2. Matlab

N = 100;

b = [1 1] ;
a = [1 −0.9] ;

d e l t a = [1 ; z e ro s (N−1 ,1)] ’ ;
h = f i l t e r (b , a , de l t a) ;

stem (h) ;

Convolution representation

Using the basic properties of linearity and time-invariance, we will derive the convolution
representation which gives an algorithm for implementing the filter directly in terms
of its impulse response. In other words, the output y(n) of any LTI filter (including
recursive LTI filters) may be computed by convolving the input signal with the filter
impulse response.

The convolution formula plays the role of the difference equation when the impulse
response is used in place of the difference-equation coefficients as a filter representation.
In fact, we will find that, for FIR filters (nonrecursive, i.e., no feedback), the difference

28 2 Introduction to digital filters

equation and convolution representation are essentially the same thing. For recursive
filters, one can think of the convolution representation as the difference equation with
all feedback terms “expanded” to an infinite number of feedforward terms.

The first step is to express an arbitrary signal x(·) as a linear combination of shifted
impulses, i.e.,

x(n) =
+∞∑

i=−∞
x(i)δ(n− i) , (x ∗ δ)(n) (2.9)

Equation (2.9) expresses a signal as a linear combination (or weighted sum) of impulses.
That is, each sample may be viewed as an impulse at some amplitude and time. As we
have already seen, each impulse (sample) arriving at the filter’s input will cause the filter
to produce an impulse response. If another impulse arrives at the filter’s input before
the first impulse response has died away, then the impulse response for both impulses
will superimpose (add together sample by sample). More generally, since the input is
a linear combination of impulses, the output is the same linear combination of impulse
responses. This is a direct consequence of the superposition principle which holds for
any LTI filter.

We repeat this in more precise terms. First linearity is used and then time-invariance
is invoked. We can express the output of any linear (and possibly time-varying) filter by

y(n) = Ln{x(·)}

= Ln{(x ∗ δ)(·)}

= Ln{
+∞∑

i=−∞
x(i)δ(· − i)}

=
+∞∑

i=−∞
x(i)h(n, i) (2.10)

where we have written h(n, i) , Ln{δ(· − i)} to denote the filter response at time n to
an impulse which occurred at time i.

If in addition to being linear, the filter is time-invariant, then h(n, i) = h(n − i),
which allows us to write

y(n) =
+∞∑

i=−∞
x(i)h(n− i) , (x ∗ h)(n) (2.11)

This states that the filter output y(n) is the convolution of the input x(n) with the
filter impulse response h(n). The infinite sum can be replaced by more typical practical
limits. By choosing time 0 as the beginning of the signal, we may define x(n) to be 0
for n < 0 so that the lower summation limit of can be replaced by 0. Also, if the filter

2.2 Time domain filter representations 29

is causal, we have h(n) = 0 for n < 0, so the upper summation limit can be written
as instead n of ∞. This gets us down to the ultimate convolution representation of a
linear, time-invariant, causal digital filter:

y(n) =
n∑

i=0

x(i)h(n− i) , (x ∗ h)(n) (2.12)

Since the above equation is a convolution, and since convolution is commutative, we can
rewrite it as

y(n) =
n∑

i=0

h(i)x(n− i) , (x ∗ h)(n) (2.13)

or
y(n) = h(0)x(n) + h(1)x(n− 1) + h(2)x(n− 2) + . . .+ h(n)x(0) (2.14)

This latter form looks more like the general difference equation presented in (2.6).

It is instructive to compare this method of filter implementation to the use of differ-
ence equations. If there is no feedback, then the difference equation and the convolution
formula are identical; in this case, h(i) = bi and there are no aj coefficients in (2.6). For
recursive filters, we can convert the difference equation into a convolution by calculat-
ing the filter impulse response. However, this can be rather tedious, since with nonzero
feedback coefficients the impulse response generally lasts forever. Of course, for stable
filters the response is infinite only in theory; in practice, one may simply truncate the
response after an appropriate length of time, such as after it falls below the quantization
noise level due to round-off error.

Listing 2.3. Matlab

N = 100;
x = rand (N, 1) ;

b = [1 1] ;
y1 = conv (b , x) ;
% th i s i s equ iva l en t to
% y2 = f i l t e r (b , 1 , x) ;
% but length (y1) = length (x) + length (b) − 1
% and length (y2) = length (x)

a = [1 −0.9] ;
y3 = f i l t e r (1 , a , x) ;

% approximation by truncat ing impulse response
% at M samples
M = 100;
de l t a = [1 ; z e ro s (M−1 ,1)] ’ ;
h = f i l t e r (1 , a , de l t a) ;
y4 = conv (h , x) ;

p lo t (y3)
hold on
p lo t (y4 , ’ r - - ’)
hold o f f

30 2 Introduction to digital filters

2.3 Transfer function analysis

This section discusses filter transfer functions and associated analysis. The transfer func-
tion provides an algebraic representation of a linear, time-invariant (LTI) filter in the
frequency domain:

The transfer function of a linear time-invariant discrete-time filter is defined as
Y (z)/X(z), where Y (z) denotes the z transform of the filter output signal y(n), and
X(z) denotes the z transform of the filter input signal x(n).

Let h(n) denote the impulse response of the filter. It turns out (as we will show) that
the transfer function is equal to the z transform of the impulse response h(n):

H(z) =
Y (z)
X(z)

(2.15)

The z transform

The bilateral z transform of the discrete-time signal is defined to be

X(z) ,
+∞∑
−∞

x(n)z−n (2.16)

where z is a complex variable.

Since signals are typically defined to begin (become nonzero) at time n = 0, and
since filters are often assumed to be causal, the lower summation limit given above may
be written as 0 rather than −∞ to yield the unilateral z transform:

X(z) ,
+∞∑
n=0

x(n)z−n (2.17)

We think of this as a “function to function” mapping. We express the fact that X is the
z transform of x by writing

X ↔ x (2.18)

The z transform of a signal x can be regarded as a polynomial in z−1, with coefficients
given by the signal samples. For example, the finite-duration signal

x(n) =

{
n+ 1, 0 ≤ n ≤ 2
0, otherwise

(2.19)

has the z transform X(z) = 1 + 2z−1 + 3z−2 = 1 + 2z−1 + 3(z−1)2.

2.3 Transfer function analysis 31

Shift theorem

The shift theorem says that a delay of ∆ samples in the time domain corresponds to a
multiplication by z−∆ in the frequency domain

Zz{SHIFT∆{x}} = z−∆X(z) (2.20)

or, using more common notation

x(n−∆)↔ z−∆X(z) (2.21)

Convolution theorem

The convolution theorem for z transforms states that for any (real or complex) signals
x and y, convolution in the time domain is multiplication in the z domain, i.e.,

x ∗ y ↔ X · Y (2.22)

From equation (2.11), we have that the output y from a LTI filter with input x and
impulse response h is given by the convolution of h and x, i.e.

y(n) = (h ∗ x)(n) (2.23)

Taking the z transform of both sides and applying the convolution theorem gives

Y (z) = H(z)X(z) (2.24)

where H(z) is the z transform of the filter impulse response. We may divide equation
(2.24) by X(z) to obtain

H(z) =
Y (z)
X(z)

, transfer function (2.25)

This shows that, as a direct result of the convolution theorem, the z transform of an
impulse response h(n) is equal to the transfer function H(z) of the filter, provided the
filter is linear and time invariant.

32 2 Introduction to digital filters

Z transform of difference equations

Using linearity and the shift theorem we can write down the z transform of any difference
equation by inspection.

y(n) = b0x(n) + b1x(n− 1) + . . .+ bMx(n−M)

− a1y(n− 1)− . . .− aNy(n−N)

(2.26)

Let’s take the z transform of both sides. Because Z{} is a linear operator, it might be
distributed through the terms on the right hand side as follows:

Z{y(n)} = Y (z) = b0X(z) + b1z
−1X(z) + . . .+ bMz−MX(z)

−a1z
−1Y (z)− . . .− aNz

−NY (z), (2.27)

Factoring out common terms Y (z) and X(z) gives

Y (z)[1 + a1z
−1 + . . .+ aNz

−N] = X(z)[b0 + b1z
−1 + . . .+ bMz−M] (2.28)

Defining the polynomials

A(z) , 1 + a1z
−1 + . . .+ aNz

−N (2.29)

B(z) , b0 + b1z
−1 + . . .+ bMz−M (2.30)

the z transform of the difference equation becomes

A(z)Y (z) = B(z)X(z) (2.31)

Finally, solving for H(z)

H(z) =
Y (z)
X(z)

=
b0 + b1z

−1 + . . .+ bMz−M

1 + a1z−1 + . . .+ aNz−N
,
B(z)
A(z)

(2.32)

Factored form

By the fundamental theorem of algebra, every Nth order polynomial can be factored
into a product of N first-order polynomials. Therefore, equation (2.24) can be written
in factored form as

H(z) = b0
(1− q1z−1)(1− q2z−1) · · · (1− qMz−1)
(1− p1z−1)(1− p2z−1) · · · (1− qNz−1)

(2.33)

2.3 Transfer function analysis 33

The numerator roots {q1, q2, . . . , qM} are called the zeros of the transfer function, and
the denominator roots {p1, p2, . . . , pN} are called the poles of the filter.

Listing 2.4. Matlab

rho = 0 . 9 ;
theta = pi /8 ;
a = [1 2∗ rho∗ cos (theta) rho ˆ 2] ;
b = [1 2 1] ;

p = root s (a)
z = root s (b)

zplane (b , a)

a2 = poly (p)
b2 = poly (z)

Series and parallel transfer functions

• Transfer functions of filters in series multiply together (Figure 2.2)

H1(z) H2(z)x(n) y(n)

Fig. 2.2. Series combination of transfer functions H1(z) and H2(z) to produce H1(z)H2(z)

Remark: series combination is commutative, i.e.: H1(z)H2(z) = H2(z)H1(z). Note,
however, that the numerical performance of the overall filter is usually affected by
the ordering of filter stages in a series combination.

• Transfer functions of parallel filters sum together (Figure 2.3)

H1(z)

H2(z)

x(n) y(n)

Fig. 2.3. Parallel combination of transfer functions H1(z) and H2(z) to produce H1(z)+H2(z)

34 2 Introduction to digital filters

Partial Fraction Expansion (PFE)

The partial fraction expansion can be used to expand any rational z transform

H(z) =
B(z)
A(z)

=
b0 + b1z

−1 + . . .+ bMz−M

1 + a1z−1 + . . .+ aNz−N
(2.34)

as a sum of first-order terms

H(z) =
B(z)
A(z)

=
N∑

i=1

ri
1− piz−1

(2.35)

for M < N , and

H(z) =
B(z)
A(z)

= F (z) + z−(K+1)
N∑

i=1

ri
1− piz−1

(2.36)

for N ≥M , where the term z−(K+1) is optional but it is often preferred.

The PFE procedure occurs in two or three steps:

• When M ≥ N , perform a long division to obtain an FIR part F (z) and a strictly
proper IIR part B′(z)/A(z)

• Find the N poles pi, i = 1, . . . , N (roots of A(z))

• If the poles are distinct, find the N residues ri, i = 1, . . . , N from

ri = (1− piz
−1)

B(z)
A(z)

∣∣∣∣
z=pi

(2.37)

A more general procedure is needed when there are repeated poles, and the general
form expression of the PFE becomes

H(z) =
B(z)
A(z)

= F (z) + z−(K+1)

Np∑
i=1

mi∑
k=1

ri,k
(1− piz−1)k

(2.38)

where Np denotes the number of distinct poles, and mi ≥ 1 denotes the multiplicity
of the ith pole

Listing 2.5. Matlab

p = [0 . 9 9 ; 0.99∗ exp (j ∗pi /8) ;
0 .99∗ exp(− j ∗pi / 8)] ;
z = [−1; exp (j ∗pi /16) ; exp(− j ∗pi / 1 6)] ;
a = poly (p) ;
b = poly (z) ;
zplane (b , a) ;
% a l s o :
% zplane (z , p) ; % note : a , b are row vectors , z , p are column vec to r s

[r , p , k] = re s i due z (b , a)

2.4 Frequency response analysis 35

2.4 Frequency response analysis

Frequency response

The frequency response of an LTI filter is defined as the spectrum of the output signal
divided by the spectrum of the input signal.

We have
Y (z) = H(z)X(z) (2.39)

A basic property of the z transform is that, over the unit circle z = ejωT , we find the
spectrum. To show this, we set z = ejωT in the definition of the z transform, to obtain

X(ejωT) =
+∞∑
−∞

x(n)e−jωnT (2.40)

which may be recognized as the definition of the Discrete Time Fourier Transform
(DTFT).

Applying this relation to Y (z) = H(z)X(z) gives

Y (ejωT) = H(ejωT)X(ejωT) (2.41)

The frequency response of a linear time-invariant filter equals the transfer function
H(z) evaluated on the unit circle in the z plane, that is H(ejωT).

This immediately implies that the frequency response is the DTFT of the impulse
response

H(ejωT) = DTFTω(h) (2.42)

The frequency response specifies the gain and phase shift applied by the filter at each
frequency.

The frequency response may be decomposed into two real-valued functions, the am-
plitude response and the phase response. Formally, we may define them as follows:

• Amplitude response

The amplitude response G(ω) of a LTI filter is defined as the magnitude of the filter
frequency response H(ejωT)

G(ω) , |H(ejωT)| (2.43)

The real-valued amplitude response G(ω) specifies the amplitude gain that the filter
provides at each frequency.

36 2 Introduction to digital filters

• Phase response

The phase response Θ(ω) of an LTI filter is defined as the phase (or complex angle)
of the frequency response H(ejωT)

Θ(ω) , ∠H(ejωT) (2.44)

The real-valued phase response Θ(ω) gives the phase shift in radians that each input
component sinusoid will undergo.

The frequency response can be expressed in polar form in terms of the amplitude
and phase response

H(ejωT) = G(ω)ejΘ(ω) (2.45)

From H(z) = B(z)/A(z) we have that the amplitude and the phase responses can
be expressed as

G(ω) =
|B(ejωT)|
|A(ejωT)|

(2.46)

Θ(ω) = ∠B(ejωT)− ∠A(ejωT) (2.47)

Computing the frequency response using the DFT

In practice, we must work with a sampled frequency axis. That is, instead of evaluat-
ing the transfer function H(z) = B(z)/A(z) at ejωT to obtain the frequency response
H(ejωT), where ω is the continuous radian frequency, we compute instead

H(ejωkT) =
B(ejωkT)
A(ejωkT)

, ejωkT , ej2πk/Ns , k = 0, 1, . . . , Ns − 1 (2.48)

where Ns is the desired number of spectral samples.

The transfer function can be written as

H(ejωT) =
B(ejωT)
A(ejωT)

=
DTFTω(B)
DTFTω(A)

(2.49)

Sampling the DTFT at ω = ωk, k = 0, 1, . . . , Ns − 1 we get the Discrete Fourier
Transform (DFT). Thus, we can write

H(ejωkT) =
DFTωk

(B)
DFTωk

(A)
, k = 0, 1, . . . , Ns − 1 (2.50)

where ωk = 2πk/Ns.

2.4 Frequency response analysis 37

Fig. 2.4. Z-transform and frequency response of the filter used in Listing 2.6

Listing 2.6. Matlab

p = [0 . 9 9 ; 0.99∗ exp (j ∗pi /8) ; 0 .99∗ exp(− j ∗pi / 8)] ;
z = [−1; exp (j ∗pi /16) ; exp(− j ∗pi / 1 6)] ;
a = poly (p) ; b = poly (z) ;

Ns = 1024;
[H, w] = f r eq z (b , a , N2) ;

f i g u r e (1)
subplot (2 , 1 , 1) p lo t (w, 10∗ log10 (abs (H) . ˆ 2)) ;
ax i s ([0 p i −50 50])
subplot (2 , 1 , 2) p lo t (w, phase (H))
ax i s ([0 p i −pi p i])

% equ iva l ent ly , the frequency response
% i s computed as f o l l ow s
B = f f t (b , 2∗Ns) ;
A = f f t (a , 2∗Ns) ;
w = 2∗ pi ∗ [0 : 2∗Ns − 1]/(2∗Ns) ;
H = B./A;

f i g u r e (2)
subplot (2 , 1 , 1)
p lo t (w, 10∗ log10 (abs (H) . ˆ 2)) ;
ax i s ([0 p i −50 50])
subplot (2 , 1 , 2)
p lo t (w, phase (H))
ax i s ([0 p i −pi p i])

To avoid undersampling, Ns ≥M and Ns ≥ N . The impulse response h(n) obtained
from the sampled frequency response will be

38 2 Introduction to digital filters

h̃(n) = IDFTn(H) =
1
Ns

Ns−1∑
k=0

H(ejωkT)ejωknT (2.51)

It will be time aliased in the IIR case, i.e. h̃ 6= h. In other words, an infinitely long
impulse response cannot be Fourier transformed using a finite-length DFT, and this
corresponds to not being able to sample the frequency response of an IIR filter without
some loss of information. In practice, we simply choose Ns sufficiently large so that the
sampled frequency response is accurate enough for our needs. A conservative practical
rule of thumb when analyzing stable digital filters is to choose Ns > 7/(1−Rmax), where
Rmax denotes the maximum pole magnitude.

Graphical frequency response

Consider the frequency response of a LTI filter expressed in factored form

H(ejωT) = g
(1− q1e−jωT)(1− q2e−jωT) · · · (1− qMe−jωT)
(1− p1e−jωT)(1− p2e−jωT) · · · (1− qNe−jωT)

(2.52)

Consider first the amplitude response G(ω) , |H(ejωT)|

G(ω) = |g| |1− q1e
−jωT | · |1− q2e−jωT | · · · |1− qMe−jωT |

|1− p1e−jωT | · |1− p2e−jωT | · · · |1− qNe−jωT |

= |g| |e
jωT − q1| · |ejωT − q2| · · · |ejωT − qM |
|ejωT − p1| · |ejωT − p2| · · · |ejωT − pN |

(2.53)

In the z plane, each term in the previous equation is the length of a vector drawn from
a pole or zero to a single point on the unit circle, as shown in Figure 2.5 for two poles
and two zeros. The gain of this two-pole two-zero filter is G(ω) = (d1d2)/(d3d4).

The phase response is almost as easy to evaluate graphically as is the amplitude
response:

Θ(ω) , ∠

{
g
(1− q1e−jωT)(1− q2e−jωT) · · · (1− qMe−jωT)
(1− p1e−jωT)(1− p2e−jωT) · · · (1− qNe−jωT)

}
= ∠g + (N −M)ωT + ∠(ejωT − q1) + ∠(ejωT − q2) + . . .+ ∠(ejωT − qM)

− ∠(ejωT − p1)− ∠(ejωT − p2)− . . .− ∠(ejωT − pN) (2.54)

The angle of ejωT − z is the angle of the constructed vector (where a vector pointing
horizontally to the right has an angle of 0). The angles of the lines from the zeros are
added, and the angles of the lines from the poles are subtracted. Thus, at the frequency ω
the phase response of the two-pole two-zero filter in the figure is Θ(ω) = θ1+θ2−θ3−θ4.

2.4 Frequency response analysis 39

Fig. 2.5. Measurement of amplitude response from a pole-zero diagram. A pole is represented
in the complex plane by ’x’, a zero by ’o’

Fig. 2.6. Amplitude response obtained by traversing the entire upper semicircle in Figure 2.5.

Stability

A filter is said to be stable if its impulse response h(n) decays to 0 as n goes to infinity.

In terms of poles and zeros, an irreducible filter transfer function is stable if and only
if all the poles are inside the unit circle in the plane. This is because the transfer function
is the z transform of the impulse response, and if there is an observable pole outside the
unit circle, then there is an exponentially increasing component of the impulse response.

40 2 Introduction to digital filters

Fig. 2.7. Measurement of phase response from a pole-zero diagram.

Fig. 2.8. Phase response obtained from Figure 2.8 for positive frequencies.

Poles on the unit circle may be called marginally stable. The impulse response com-
ponent corresponding to a pole on the unit circle never decays, but neither does it grow.
In physical modeling applications, marginally stable poles occur often in lossless systems,
such as ideal vibrating strings.

Phase response analysis

In the previous sections we showed that the frequency response of a digital LTI filter
can be decomposed into the amplitude response G(ω) times the phase response ejΘ(ω).

2.4 Frequency response analysis 41

In the following we look at two alternative forms of the phase response: phase delay and
group delay.

Phase delay

The phase response Θ(ω) of an LTI filter gives the radian phase shift experienced by
each sinusoidal component of the input signal. In is often more intuitive to consider
instead the phase delay, defined as

P (ω) , −Θ(ω)
ω

(2.55)

The phase delay gives the time delay in seconds experienced by each sinusoidal com-
ponent of the input signal. Consider, for example, the filter H(z) = 1 + z−1. Its phase
response is Θ(ω) = −ωT/2, which corresponds to a phase delay P (ω) = T/2, or one-half
sample.

From a sine-wave analysis point of view, if the input to a filter with frequency
response H(ejωT) = G(ω)ejΘ(ω) is x(n) = cos(ωnT), then the output is

y(n) = G(ω) cos[ωnT +Θ(ω)] = G(ω) cos{ω[nT − P (ω)]} (2.56)

and it can be clearly seen in this form that the phase delay expresses the phase response
as a time delay.

Phase unwrapping

In working with phase delay, it is often necessary to “unwrap” the phase response Θ(ω).
Phase unwrapping ensures that all appropriate multiples of 2π have been included in
Θ(ω). We defined Θ(ω) simply as the complex angle of the frequency response H(ejωT),
and this is not sufficient for obtaining a phase response which can be converted to true
time delay. If multiples of are discarded, as is done in the definition of complex angle, the
phase delay is modified by multiples of the sinusoidal period. Since LTI filter analysis is
based on sinusoids without beginning or end, one cannot in principle distinguish between
“true” phase delay and a phase delay with discarded sinusoidal periods when looking
at a sinusoidal output at any given frequency. Nevertheless, it is often useful to define
the filter phase response as a continuous function of frequency with the property that
Θ(0) = 0 or π (for real filters). This specifies how to unwrap the phase response at
all frequencies where the amplitude response is finite and nonzero. When the amplitude

42 2 Introduction to digital filters

response goes to zero or infinity at some frequency, we can try to take a limit from below
and above that frequency.

Matlab has a function called unwrap() which implements a numerical algorithm for
phase unwrapping. Figure 2.9 shows the effect of the unwrap function on the phase
response of the example elliptic lowpass filter, modified to contract the zeros from the
unit circle to a circle of radius 0.95 in the z-plane. In Figure 2.9a, the phase-response
minimum has “wrapped around” to the top of the plot. In Figure 2.9b, the phase response
is continuous. We have contracted the zeros away from the unit circle in this example,
because the phase response really does switch discontinuously by radians when frequency
passes through a point where the phases crosses zero along the unit circle. The unwrap
function need not modify these discontinuities, but it is free to add or subtract any
integer multiple of in order to obtain the “best looking” discontinuity. Typically, for
best results, such discontinuities should alternate between +π and −π, making the
phase response resemble a distorted “square wave”.

Listing 2.7. Matlab

% des ign lowpass f i l t e r (order , passband r ipp l e , stopband attenuat ion , c u t o f f f requency)
[B,A] = e l l i p (4 , 1 , 2 0 , 0 . 5) ;
B = B .∗ (0 . 9 5) . ˆ [1 : l ength (B)] ; % contrac t z e ro s by 0 .95
[H,w] = f r eq z (B,A) ; % frequency response
theta = angle (H) ; % phase response
thetauw = unwrap (theta) ; % unwrapped phase response
% a l s o thetauw = phase (theta) ;

subplot (2 , 1 , 1) , p l o t (w, theta)
t i t l e (’ P h a s e r e s p o n s e ’)
x l abe l (’ N o r m a l i z e d f r e q u e n c y (r a d i a n s / s a m p l e) ’) ;
y l abe l (’ \ T h e t a (\ o m e g a) ’) ;
subplot (2 , 1 , 2) , p l o t (w, thetauw)
t i t l e (’ P h a s e r e s p o n s e u n w r a p p e d ’)
x l abe l (’ N o r m a l i z e d f r e q u e n c y (r a d i a n s / s a m p l e) ’) ;
y l abe l (’ \ T h e t a (\ o m e g a) ’) ;

Group delay

A more commonly encountered representation of filter phase response is called the group
delay, defined by

D(ω) = − d

dω
Θ(ω) (2.57)

For linear phase responses, i.e. Θ(ω) = −αω for some constant α, the group delay
and the phase delay are identical, and each might be interpreted as time delay (equal
to α when ω ∈ [−π,+π]). If the phase response is nonlinear, then the relative phases of
the sinusoidal signal components are generally altered by the filter. A nonlinear phase
response normally causes a “smearing” of attack transients such as in percussive sounds.
Another term for this type of phase distortion is phase dispersion.

2.4 Frequency response analysis 43

0 0.5 1 1.5 2 2.5 3 3.5
−4

−2

0

2

4
a) Phase response

Normalized frequency (radians / sample)
Θ

(ω
)

0 0.5 1 1.5 2 2.5 3 3.5
−6

−4

−2

0

2
b) Phase response unwrapped

Normalized frequency (radians / sample)

Θ
(ω

)

Fig. 2.9. Phase unwrapping

For any phase function the group delay D(ω) may be interpreted as the time delay
of the amplitude envelope of a sinusoid at frequency ω. The bandwidth of the amplitude
envelope in this interpretation must be restricted to a frequency interval over which the
phase response is approximately linear. Thus, the name “group delay” for D(ω) refers to
the fact that it specifies the delay experienced by a narrow-band “group” of sinusoidal
components which have frequencies within a narrow frequency interval about ω. The
width of this interval is limited to that over which D(ω) is approximately constant.

Suppose we write a narrowband signal centered at frequency ωc as

x(n) = am(n)ejωcn (2.58)

where ωc is defined as the carrier frequency (in radians per sample), and am(n) is some
narrowband amplitude modulation signal. It can be shown that the output of a LTI
filter is given by

y(n) = af [n−D(ωc)]ejωc[n−P (ωc)] (2.59)

where af (n) denotes a zero phase filtering of the amplitude envelope a(n) by G(ω+ωc).
We have shown that, for narrowband signals expressed as a modulation envelope times
a sinusoidal carrier, the carrier wave is delayed by the filter phase delay, while the
modulation is delayed by the filter group delay, provided that the filter phase response
is approximately linear over the narrowband frequency interval.

44 2 Introduction to digital filters

Filters preserving phase

When one wishes to modify only a signal’s magnitude-spectrum and not its spectral
phase, then a linear-phase filter is desirable.

Linear-phase filters have a symmetric impulse response, i.e.,

h(n) = h(N − 1− n) (2.60)

for n = 0, 1, 2, . . . , N − 1, where h(n) is the length N impulse response of a causal FIR
filter. Recursive filters cannot have symmetric impulse responses.

A zero phase filter is a special case of a linear phase filter in which the phase is zero.
The real impulse response h(n) of a zero-phase filter is even. That is, it satisfies

h(n) = h(−n) (2.61)

Note that a zero-phase filter cannot be causal.

It is a well known Fourier symmetry that real, even signals have real, even Fourier
transforms. Therefore a real, even impulse response corresponds to a real, even frequency
response. We have that

H(ejωT) =
+∞∑
−∞

h(n) cos(ωnT) (2.62)

This is a real and even function of ω. In practice, the filter is usually precisely zero-phase
in all “pass bands”, while it oscillates between 0 and π in the stop bands.

Let us prove that if h(n) satisfies the condition h(n) = h(N − 1 − n), then it has
linear phase. We assume here that N is odd. As a result, the filter

hzp(n) = h(n+
N − 1

2
), n = −N − 1

2
, . . . ,

N − 1
2

(2.63)

is a zero-phase filter. Thus, every linear-phase filter can be expressed as a delay of some
zero-phase filter,

h(n) = hzp(n−
N − 1

2
), n = 0, 1, . . . , N − 1 (2.64)

By the shift theorem for z transforms, the transfer function of a linear phase filter is

H(z) = z−
N−1

2 Hzp(z) (2.65)

and the frequency response is

2.4 Frequency response analysis 45

H(ejωT) = e−jω N−1
2 THzp(ejωT) (2.66)

Since Hzp(ejωT) can go negative, the phase response is

Θ(ω) =

{
N−1

2 ωT, Hzp(ejωT) ≥ 0
N−1

2 ωT + π, Hzp(ejωT) < 0
(2.67)

Listing 2.8. Matlab

h = [3 4 6 1] ;
h lp = [f l i p l r (h (2 : end)) h] ;

f r e q z (h lp , 1 , 1024) ;

Allpass filters

The allpass filter passes all frequencies with equal gain. This is in contrast with a lowpass
filter, which passes only low frequencies, a highpass which passes high-frequencies, and
a bandpass filter which passes an interval of frequencies. An allpass filter may have
any phase response. The only requirement is that its amplitude response be constant.
Normally, this constant is |H(ejω)| = 1.

From a physical modeling point of view, a unity-gain allpass filter models a lossless
system in the sense that it preserves signal energy. Specifically, if x(n) denotes the input
to an allpass filter H(z), and if y(n) denotes its output, then we have

+∞∑
−∞
|x(n)|2 =

+∞∑
−∞
|y(n)|2 (2.68)

All an allpass filter can do is delay the sinusoidal components of a signal by differing
amounts.

The transfer function of every finite-order, causal, lossless IIR digital filter (recursive
allpass filter) can be written as

H(z) = ejφz−K Ã(z)
A(z)

(2.69)

where K ≥ 0,
A(z) , 1 + a1z

−1 + a2z
−2 + . . .+ aNz

−N , (2.70)

and

Ã(z) , z−N Ā(z−1) = āN + āN−1z
−1 + āN−2z

−2 + . . .+ a1z
−(N−1) + z−N . (2.71)

46 2 Introduction to digital filters

Thus, Ã(z) is obtained from by simply reversing the order of the coefficients and conju-
gating them when they are complex.

In terms of the poles and zeros of a filter H(z) = B(z)/A(z), an allpass filter must
have a zero at z = 1/p̂ for each pole at z = p.

Listing 2.9. Matlab

b = [1 3 1 5] ;
a = conj (f l i p l r (b)) ;

f r e q z (b , a , 1024) ;

Minimum phase digital filters

An LTI filter H(z) = B(z)/A(z) is said to be minimum phase if all its poles and zeros are
inside the unit circle |z| = 1 (excluding the unit circle itself). Note that minimum-phase
filters are stable by definition since the poles must be inside the unit circle. In addition,
because the zeros must also be inside the unit circle, the inverse filter 1/H(z) is also
stable when is minimum phase. A filter is minimum phase if both the numerator and
denominator of its transfer function are minimum-phase polynomials in z−1:

A polynomial of the form

B(z) = b0 + b1z−1 + b2z
−2 + . . .+ bMz−M = b0(1− ξ1z−1)(1− ξ2z−1) · · · (1− ξMz−1)

(2.72)
is said to be minimum phase if all the roots ξi are inside the unit circle.

A signal h(n) is said to be minimum phase if its z transform H(z) is minimum phase.
Note that every stable, causal, all-pole, (causal) filterH(z) = b0/A(z) is minimum phase.
The opposite of minimum phase is maximum phase.

Example

An easy case to classify is the set of all first-order FIR filters

H(z) = 1 + h1z
−1 (2.73)

where we have normalized h1 to 1 for semplicity. We have a single zero at z = −h1. If
|h1| < 1, the filter is minimum phase. If |h1| > 1 it is maximum phase. Note that the
minimum phase case is the one in which the impulse response [1, h1, 0, . . .] decays instead
of grows. It can be shown that this is a general property of minimum-phase sequences:

2.4 Frequency response analysis 47

Among all signals hi(n) having the identical magnitude spectra, the minimum phase
signal hmp(z) has the fastest decay in the sense that

K∑
n=0

|hmp(n)|2 ≥
K∑

n=0

|hi(n)|2, K = 0, 1, 2, . . . (2.74)

That is, the signal energy in the first K + 1 samples of the minimum-phase case is at
least as large as any other causal signal having the same magnitude spectrum. Thus,
minimum-phase signals are maximally concentrated toward time 0 among the space of
causal signals having a given magnitude spectrum. As a result of this property, minimum-
phase signals are sometimes called minimum-delay signals.

Minimum phase/allpass decomposition

Every causal stable filterH(z) can be factored out into a minimum-phase filter in cascade
with a causal stable allpass filter:

H(z) = Hmp(z)S(z) (2.75)

where Hmp(z) is minimum phase, S(z) is an allpass filter

S(z) =
s̄L + s̄L−1z−1 + s̄L−2z

−2 + . . .+ z−L

1 + s1z−1 + s2z−2 + . . .+ sLz−L
(2.76)

and L is the number of non-minimum-phase zeros of H(z).

Listing 2.10. Matlab

z = [2 ; 3∗exp (j ∗pi /8) ; 3∗exp(− j ∗pi /8) ; 0 .5∗ exp (j ∗pi /4) ; 0 .5∗ exp(− j ∗pi / 4)] ;
p = [0 . 9 ; 0 .8∗ exp (j ∗pi /2) ; 0 .8∗ exp(− j ∗pi / 2)] ;

f i g u r e (1)
zplane (z , p)

b = poly (z) ;
a = poly (p) ;

z minp = z (abs (z) < 1) ;
z maxp = z (abs (z) >= 1) ;

b a l l p a s s = poly (z maxp) ;
a a l l p a s s = conj (f l i p l r (b a l l p a s s)) ;

b minp = poly (z minp) ;
a minp = poly (p) ;

[H, w] = f r eq z (b , a , 1024) ;
[H minp , w] = f r eq z (b minp , a minp , 1024) ;
[H a l lpass , w] = f r eq z (b a l l pa s s , a a l l p a s s , 1024) ;

f i g u r e (2)
subplot (3 , 2 , 1) p lo t (w, abs (H)) ; t i t l e (’ | H (\ o m e g a) | ’)
subplot (3 , 2 , 2) ; p l o t (w, phase (H)) ; t i t l e (’ \ a n g l e H (\ o m e g a) ’)

subplot (3 , 2 , 3) p lo t (w, abs (H minp)) ; t i t l e (’ | H _ { m i n p } (\ o m e g a) | ’)
subplot (3 , 2 , 4) ; p l o t (w, phase (H minp)) ; t i t l e (’ \ a n g l e H _ { m i n p } (\ o m e g a) ’)

48 2 Introduction to digital filters

subplot (3 , 2 , 5) p lo t (w, abs (H a l l pa s s)) ; t i t l e (’ | H _ { a l l p a s s } (\ o m e g a) | ’)
subplot (3 , 2 , 6) ; p l o t (w, phase (H a l l pa s s)) ; t i t l e (’ \ a n g l e H _ { a l l p a s s } (\ o m e g a) ’)

References

• Smith, J.O. Introduction to Digital Filters, September 2005 Draft,

http://ccrma.stanford.edu/~jos/filters05/

3

Windowing and Short Time Fourier Transform

3.1 Overview of windows

Windows are used to convert infinite duration signals to finite duration signals. For
practical reasons, we must have a finite duration signal in order to compute the DFT
(FFT). For the moment this is a severe limitation, but we will see how we can effectively
compute the DTFT, through a succession of DFT’s.

Windows are commonly used for:

• Spectral analysis (Short Time Fourier Transform)

• FIR Filter design

Example of windowing

Lets look at a simple example of windowing to demonstrate what happens when we turn
an infinite duration signal into a finite duration signal through windowing. For example,
consider the complex sinusoid:

x(n) = ejω0nT , −π ≤ ω0 ≤ +π (3.1)

We notice that:

• real part = cos(ω0nT)

• the frequencies present in the signal are only positive (it is an analytic signal)

50 3 Windowing and Short Time Fourier Transform

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

zero−phase window

time (samples)

am
pl

itu
de

Fig. 3.1. Example of a zero-phase window (Hanning) of length N = 1001 samples

This signal is infinite duration. In order to end up with a signal which dies out
eventually (so we can use the DFT), we need to multiply our signal by a window. The
window in Figure 3.1 is real and even. Its Fourier transform is real and even, therefore
it is a zero-phase signal

We might require that our window is zero for time values less than 0. We define such
a window as causal. This is necessary for real time processing.

By shifting the original window in time by half of its length, we have turned the
original non-causal window into a causal window. The shift property of the Fourier
transform tells us that we have introduced a linear phase term.

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

linear−phase causal window

time (samples)

am
pl

itu
de

Fig. 3.2. Example of a linear-phase causal window (Hanning) of length N = 1001 samples

Our original signal (unwindowed, infinite duration) is x(n) = ejω0nT , n ∈ Z. The
DTFT of this infinite duration signal is a delta function at ω0: X(ω) = δ(ω − ω0)
(remember that the DTFT is continuous and periodic, with period 2π, i.e. X(ω) =
X(ω + 2πm)). The windowed version is xw(n) = w(n)e−jω0nT , as shown in Figure 3.3.

3.1 Overview of windows 51

−1000 −800 −600 −400 −200 0 200 400 600 800 1000

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (samples)

am
pl

itu
de

Fig. 3.3. Example of windowed signal (real part)

In Chapter 1 we showed that, for the DFT, multiplication in the time domain cor-
responds to (cyclic) convolution in the frequency domain. The same result holds also
for the DTFT. Hence, in our case, we are left with the (cyclic) convolution of a delta
function at ω0 and the DTFT of the window. The result of convolution with a delta
function, is the original function, shifted to the location of the delta function.

0 0.5 1 1.5 2 2.5 3
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

frequency (radians / sample)

am
pl

itu
de

 (
dB

)

Fig. 3.4. Example of windowed signal spectrum.

• Our windowing operation in the time domain resulted in a ’smearing’ or ’smoothing’
in the frequency domain. We need to be aware of this if we are trying to resolve
sinusoids which are close together in frequency

• Windowing also introduces side lobes. This is important when we are trying to resolve
low amplitude sinusoids in the presence of higher amplitude signals

Types of windows

There are many type of windows which serve various purposes and exhibit various prop-
erties.

52 3 Windowing and Short Time Fourier Transform

Rectangular window

The causal rectangular window may be defined as

wR(n) =

{
1/M, n = 0, 1, 2, . . . ,M − 1
0, elsewhere

(3.2)

To see what happens in the frequency domain, we need to look at the DTFT of the
window:

WR(ωk) = DTFT(wR)

=
+∞∑

n=−∞
wR(n)e−jωnT

=
M−1∑
n=0

1
M

(e−jωT)n

=
1
M

1− e−jωTM

1− e−jωT
(3.3)

= C
sin(ωMT/2)
sin(ωT/2)

(3.4)

This function is sometimes called digital sinc and it is denoted by

sincM (ωT) ,
sin(ωMT/2)
sin(ωT/2)

(3.5)

and it is shown in Figure 3.5 for M = 31.

Some important points:

• zero crossings at integer multiples of ΩM , 2π/M (ΩM is the frequency sampling
interval for a length M DFT)

• main lobe width of 2ΩM = 4π
M

• as M gets bigger, the mainlobe narrows (better frequency resolution)

• M has no effect on the height of the side lobes

• 1st sidelobe only 13dB down from the mainlobe peak

• side lobes roll off at approximately 6dB / octave (as T → 0)

• the phase term comes from the fact that we shifted the window to make it causal.

3.1 Overview of windows 53

0 10 20 30 40 50 60
0

0.01

0.02

0.03

time (samples)

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

frequency (radians / sample)

am
pl

itu
de

−1.5 −1 −0.5 0 0.5 1 1.5
−50

−40

−30

−20

−10

0

frequency (radians / sample)

am
pl

itu
de

 (
dB

)

Fig. 3.5. Rectangular window of length M = 31 and its spectrum.

Example: resolution of two cosines (in-phase case) (Figure 3.6)

• 2 cosines separated by ∆ω = 2π
40

• rectangular windows of lengths: 20, 30, 40, 80 (∆ω = 1
2ΩM , 3

4ΩM , ΩM , 2ΩM)

Listing 3.1. Matlab

M = [20 , 3 0 , 4 0 , 8 0] ;

f o r i = 1 : l ength (M)

N = 2ˆ14;

Omega M = 2∗ pi / (N/1000) ;

Omega 1 = Omega M;
Omega 2 = Omega M + 2∗ pi / 40 ;

n = [0 :N−1];
T = 1 ;
x = cos (Omega 1 ∗ n ∗ T) ’ + cos (Omega 2 ∗ n ∗ T) ’ ;

w R = 1/M(i) ∗ones (M(i) , 1) ;
w R = [w R ; ze ro s (N − M(i) , 1)] ;

y = x .∗w R ;

Y = f f t (y , N) ;

omega = (2∗ pi∗[−N/2: N/2−1] / N) ’ ;
subplot (2 ,2 , i) , p l o t (omega , f f t s h i f t (20∗ log10 (abs (Y)))) ;
t i t l e ([’ M = ’ num2str (M)])
x l abe l (’ f r e q u e n c y (r a d i a n s / s a m p l e) ’) ;
y l abe l (’ a m p l i t u d e (d B) ’) ;

ax i s ([0 , p i /2 ,−30 ,0])

end

54 3 Windowing and Short Time Fourier Transform

0 0.5 1 1.5
−30

−25

−20

−15

−10

−5

0
M = 20

frequency (radians / sample)

am
pl

itu
de

 (
dB

)

0 0.5 1 1.5
−30

−25

−20

−15

−10

−5

0
M = 30

frequency (radians / sample)

am
pl

itu
de

 (
dB

)

0 0.5 1 1.5
−30

−25

−20

−15

−10

−5

0
M = 40

frequency (radians / sample)

am
pl

itu
de

 (
dB

)

0 0.5 1 1.5
−30

−25

−20

−15

−10

−5

0
M = 80

frequency (radians / sample)

am
pl

itu
de

 (
dB

)

Fig. 3.6. Separation of two in-phase sinusoids with a rectangular window of length M =
20, 30, 40, 80.

Example: resolution of two cosines (phase quadrature case) (Figure 3.7)

• as above, but 1 sine and 1 cosine

• note: least-resolved case resolved

• note: M = 40 case suddenly looks much worse

• Only the M = 80 case looks good at all phases

Note: both in the in-phase and phase quadrature cases, peak locations are biased.

Figure 3.6 and Figure 3.7 suggest that, for a rectangular window, two sinusoids can
be most easily resolved when they are separated in the frequency by

∆ω ≥ 2ΩM (3.6)

This means that there must be at least two full cycles of the difference frequency under
the window.

The rectangular window provides an abrupt transition at its edge. Lets look at some
other windows which have a more gradual transition. This is usually done to reduce the
height of the side lobes, but increasing the width of the main lobe.

3.1 Overview of windows 55

0 0.5 1 1.5
−30

−25

−20

−15

−10

−5

0
M = 20

frequency (radians / sample)

am
pl

itu
de

 (
dB

)

0 0.5 1 1.5
−30

−25

−20

−15

−10

−5

0
M = 30

frequency (radians / sample)

am
pl

itu
de

 (
dB

)

0 0.5 1 1.5
−30

−25

−20

−15

−10

−5

0
M = 40

frequency (radians / sample)

am
pl

itu
de

 (
dB

)

0 0.5 1 1.5
−30

−25

−20

−15

−10

−5

0
M = 80

frequency (radians / sample)

am
pl

itu
de

 (
dB

)

Fig. 3.7. Separation of two in-phase sinusoids with a rectangular window of length M =
20, 30, 40, 80.

−3 −2 −1 0 1 2 3
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

frequency (radians/sample)

am
pl

itu
de

Fig. 3.8. Construction of the frequency response of the Hanning window.

Tapered windows

Consider Figure 3.8 in the frequency domain

We have added two extra digital sinc functions (shifted at +ΩM and −ΩM) which
results in the following behavior

• There is some cancelation of the side lobes

56 3 Windowing and Short Time Fourier Transform

• The width of the main lobe is doubled

The frequency response can be written in terms of WR(ω)

WH(ω) , αWR(ω) + βWR(ω −ΩM) + βWR(ω +ΩM)

= αsincM (ω) + sincM (ω −ΩM) + βsincM (ω +ΩM) (3.7)

Using the shift theorem, we can take the inverse DTFT of the above equation:

wH = αwR(n) + βe−jΩM nwR(n) + βejΩM nwR(n) = wR(n)
[
α+ 2β cos

(
2πn
M

)]
(3.8)

Hanning window or Hann

The Hanning window is defined by setting α to 1/2 and β to 1/4 (see Figure 3.9)

wH(n) = wR(n)
[
1
2

+
1
2

cos(ΩMn)
]

= wR(n) cos2
(
ΩM

2
n

)
(3.9)

Hanning window properties

• Mainlobe is 4ΩM wide

• 1st lobe is at -31dB

• side lobes roll off at approx. 18dB /octave

Hamming

This window is determined by optimizing over α and β in such a way as to reduce the
worst case side lobe level (see Figure 3.9). Doing this, results in the following values:

• α = 0.5436 (∼ 25/46)

• β = (1− α)/2

Hamming window properties

• Discontinuous slam to zero at endpoints

• main lobe is 4ΩM

• roll off is approx 6dB / octave (as T → 0)

• 1st side lobe is improved over Hanning (approx −43dB)

• side lobes closer to equal ripple

3.1 Overview of windows 57

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Hanning window

time (samples)
0 10 20 30

0

0.2

0.4

0.6

0.8

1
Hamming window

time (samples)

−2 0 2
−60

−40

−20

0

20

frequency (radians /sample)

am
pl

itu
de

 (
dB

)

−2 0 2
−60

−40

−20

0

20

frequency (radians /sample)

am
pl

itu
de

 (
dB

)

Fig. 3.9. Hanning window (left) and Hamming window (right).

Blackman-Harris

The Blackman-Harris family of windows is basically a generalization of the Hamming
family.

The Blackman-Harris family is derived by considering a more general summation of
shifted sinc functions:

wB(n) = wR(n)
L−1∑
l=0

αl cos(lΩMn) (3.10)

• L = 1: rectangular

• L = 2: Generalized Hamming

• L = 3: Blackman

Blackman

The Blackman window is a specific case where α0 = 0.42, α1 = 0.5 and α2 = 0.08.

Properties

• side lobe roll off about 18dB per octave (as T → 0)

• -58.11dB side lobe level (worst case)

58 3 Windowing and Short Time Fourier Transform

Kaiser window

The Kaiser window maximizes the energy in the main lobe of the window

max
w

[
main lobe energy
side lobe energy

]
(3.11)

Kaiser discovered an approximation based upon Bessel functions:

wK(n) ,

I0

(
β

√
1−(n

M/2)
2
)

I0(β)
M−1

2 ≤ n ≤ M−1
2

0 elsewhere
(3.12)

where I0 is a Bessel function of the first kind, and it is equal to

I0(x) ,
∞∑

k=0

[
(x/2)k

k!

]2
(3.13)

Sometimes you see the Kaiser window parametrized by α, where β , πα

• β is equal to 1/2 time-bandwidth product

• β trades off side lobe level for main lobe width. Larger β implies lower side lobe level,
wider main lobe

Dolph-Chebyshev window

The Dolph-Chebychev window minimizes the Chebychev norm of the side lobes, for a
given main lobe width 2ωc:

min
w
||sidelobes(W)||∞ , min

w
{max

ω>ωc

|W (ω)|} (3.14)

The Chebychev norm is also called the L−infinity norm, uniform norm, minimax norm
or simply the maximum absolute value.

The optimal Dolph-Chebychev window transform can be written in closed form:

W (ωk) = (−1)k cos{M cos−1[β cos(πk/M)]}
cosh[M cosh−1(β)]

, |k| ≤M − 1 (3.15)

β = cosh−1
[

1
M
cosh−1(10α)

]
α ≈ 2, 3, 4 (3.16)

3.1 Overview of windows 59

Fig. 3.10. Kaiser window: main lobe vs side lobe level tradeoff

The zero-phase Dolph-Chebychev window, w(n), is then computed as the inverse DFT
of W (ωk). The α parameter controls the side lobe level via the formula

Side-Lobe Level in dB = −20α (3.17)

Since the side lobes of the Dolph-Chebyshev window transform are equal height, they
are often called “ripple in the stop-band” (thinking now of the window transform as a
low-pass filter frequency response). The smaller the ripple specification, the larger ωc

has to become to satisfy it, for a given window length M .

Note: The elegant equal ripple property in the frequency domain (a perfect solution
to a minimum-sidelobe-attenuation specifcation) has the unfortunate consequence of
introducing impulsive ears at the endpoints of the window in the time-domain. These
ears can be the source of pre-echo or post-echo distortion which are time-domain effects
not reflected in a simple sidelobe level specification.

Gaussian window

The Gaussian curve is the only smooth function that transforms to itself:

e−t2/2σ2
↔
√

2πσ2e−ω2/2(1/σ)2 (3.18)

60 3 Windowing and Short Time Fourier Transform

−15 −10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

samples

−1.5 −1 −0.5 0 0.5 1 1.5
−50

−40

−30

−20

−10

0

10

20

30

frequency (radians/sample)

am
pl

itu
de

 (
dB

)

Fig. 3.11. Chebychev window M = 31, ripple -30dB

Since the true Gaussian function has infinite duration, in practice we must window
it with some usual finite window, or at least truncate it.

Property: On a dB scale the Gaussian is quadratic ⇒ parabolic interpolation of a
sampled Gaussian transform is exact.

Listing 3.2. Matlab

wvtool (hamming (64) , hann (64) , gausswin (64))

% see a l s o
% wintoo l

Windows summary

Table 3.1. Characteristics of popular windows

window Main-lobe width Side-lobe level [dB] Roll-off [dB/octave]
Rectangular 2ΩM -13.3 -6

Hanning 4ΩM -31.5 -18
Hamming 4ΩM -42.7 -6
Blackman 6ΩM -58.1 -18

3.2 Overlap and add 61

3.2 Overlap and add

Finite length signals

In Chapter 2 we showed that the output of a LTI digital filter can be obtained by
computing the (linear) convolution of the input signal with the impulse response of the
filter, i.e.

y(n) =
+∞∑

i=−∞
x(i)h(n− i) =

+∞∑
i=−∞

h(i)x(n− i) (3.19)

If the filter is causal and FIR with Nh taps, we get

y(n) =
Nh−1∑
i=0

h(i)x(n− i) (3.20)

If the input signal is finite length, with Nx samples, the computation of the linear convo-
lution requires Nh ·Nx multiplications and Nh ·Nx− 1 additions, i.e. the computational
complexity order is O(Nh ·Nx).

In the following, we will show how to compute linear convolution in the frequency
domain by means of the FFT. First, recall the convolution theorem introduce in Chapter
1 for discrete sequences of length N :

(x ∗ y)↔ XY (3.21)

or
DFTk(x ∗ y) = X(k)Y (k) (3.22)

It is important to remember that the specific form of convolution implied in the above
equation is circular or cyclic convolution:

y(n) , (x ∗ h) ,
N−1∑
m=0

x(m)h(n−m)N (3.23)

where (n−m)N means (n−m) modulo N .

Idea: If we add enough trailing zeros to the signals being convolved, we can get the
same results as in linear convolution.

• If we perform a linear convolution of two signals, x and h, with lengths Nx and Nh,
as in (3.20), the resulting signal has length Ny = Nx +Nh − 1.

• We must therefore add enough zeros to x and h so that the cyclic convolution result
is length Ny or longer.

62 3 Windowing and Short Time Fourier Transform

– If we don’t add enough zeros, some of our convolution terms wrap around and
add back upon others (due to modulo indexing).

– This can be thought of as time domain aliasing.

Therefore, in order to compute linear convolution in the frequency domain, we need
to perform the following steps

1. Pad both the input signal x and the filter h with zeros, in such a way that both
signals have length N ≥ Nx +Nh−1. In practice, it is convenient to choose N to be
the smallest power of 2 satisfying the above inequality. This is due to the fact that
the computation of the FFT is fastest when the input signal lengths are powers of
2.

2. Compute the FFT of x and h, i.e. X and H (O(2N logN)).

3. Perform term-by-term multiplication of X and H, i.e. Y (k) = X(k)H(k) (O(N)).
This is equivalent to computing cyclic convolution of the zero-padded signals, thus
avoiding wrap around effects.

4. Compute the inverse FFT of Y to get the output signal y (O(N logN)).

Therefore, the computational complexity of this procedure is O(2N logN +N logN +
N) = O(N logN) = O((Nx +Nh − 1) log(Nx +Nh − 1)).

We are given with two methods to compute linear convolution of two finite length
sequences: time-domain and frequency-domain convolution.

• if Nh is small, in the order of a dozen samples, it is typically faster to compute linear
convolution in the time-domain.

• if Nh is large, frequency-domain convolution should be preferred.

The exact value of Nh for which frequency-domain convolution becomes faster, depends
on Nx and on the specific algorithm used to implement the FFT.

When working with image signals, the sizes of the filters involved are typically small,
thus making time-domain convolution preferable. Conversely, in audio signal processing,
filters have often several hundreds or even thousands of samples.

3.2 Overlap and add 63

• The nominal integration time of the ear, defined as the reciprocal of the critical
bandwidth of hearing, is around 10ms below 500Hz

• At 50kHz sampling rate, this is 500 samples

• Therefore FIR filters shorter than the ear’s integration time can easily be hundreds
of taps long

• FIR filters shorter than ear’s integration time can be generally characterized by their
magnitude frequency response (no perceivable delay effects)

• FFT convolution is consequently an important implementation tool for FIR filters
in digital audio.

Infinite length signals

We saw that we can perform efficient linear convolution of two finite length sequences
using Fourier based techniques.

There are some situations where it will not be practical to perform the convolution
of two signals using one FFT

• Nx is extremely large

• Real time operation (we can’t wait until the signal ends)

Theoretically, there is no problem doing this with direct convolution. Since h is finite in
length we only need to store the past Nh − 1 samples of the input signal x to calculate
the next output. Unfortunately, this procedure can be extremely time-consuming when
Nh is large.

The overlap-and-add algorithm (OLA) described below provides an efficient way of
performing FIR filtering on infinite length signals by taking advantage of the FFT.

Idea: We might be able to perform convolution on a block at time. Basically, we
chop up the input signal, x by windowing, and perform frequency domain convolution
on each block separately. We need to make sure we put it all back together correctly.

64 3 Windowing and Short Time Fourier Transform

OLA algorithm summary

Inputs:

• x is indefinitely long

• h can be any FIR filter of known maximum length Nh

OLA algorithm:

1. Extract the mth block of data of length M samples, starting from the sample index
mR (R denotes the hop-size).

2. Shift it to the base time interval [0,M − 1] (or [−(M − 1)/2, (M − 1)/2]).

3. Apply the analysis window w (causal or zero phase, as preferred).

4. Zero-pad the windowed data out to N samples (N should be a power of 2).

5. Take the N -point FFT of the windowed data (X) and the filter (H).

6. Apply the filter H in the frequency domain by performing term-by-term multiplica-
tion.

7. Take the N point inverse FFT.

8. Shift the origin of the N -point result out to sample mR where it belongs.

9. Sum into the output buffer containing the results from prior frames (OLA step).

The following conditions must be satisfied:

•
∑

m w(n−mR) = 1

• To avoid time domain aliasing: N > M +Nh − 1

In the following, we will show that if both conditions are satisfied, the OLA algorithm
computes exactly the same result as linear convolution in the time-domain. As for finite-
length signals, the computational complexity of the OLA algorithm is smaller than direct
linear convolution when the size of the filter Nh is large, thanks to the use of the FFT.

3.2 Overlap and add 65

Fig. 3.12. Successive windowed frames (causal window, 50% overlap

The mathematics of OLA

Consider breaking the input signal x, into frames using a finite, zero phase length
M(odd) window. Let xm denote the mth frame.

xm(n) , x(n)w(n−mR) n ∈ (−∞,+∞) (3.24)

where R , frame step (hop size) and m , frame index.

The hop size is the number of samples between adjacent frames. Specifically, it is the
number of samples by which we advance each successive window (see Figure 3.12).

For this frame-by-frame spectral processing to work, we must be able to reconstruct
x from the individual overlapping frames. This can be written as

66 3 Windowing and Short Time Fourier Transform

x(n) =
+∞∑

m=−∞
xm(n)

=
+∞∑

m=−∞
x(n)w(n−mR)

= x(n)
+∞∑

m=−∞
w(n−mR)

(3.25)

Hence, x =
∑

m xm if and only if ∑
m

w(n−mR) = 1 (3.26)

This is the constant-overlap-add (COLA) constraint for the analysis window w.

• All windows which obey the constant-overlap-add constraint will yield perfect recon-
struction of the original signal from the data frames by overlap-add (OLA).

• There is no constraint on window type, only that the window overlap-adds to a
constant for the hop size used.

• Examples:

– Rectangular window at 0% overlap (hop size R = window size M)

– Rectangular window at 50% overlap (R = M/2)

– Bartlett window at 50% overlap (R = M/2)

– Hamming window at 50% overlap (R = M/2)

– Hamming window at 75% overlap (R = M/4)

– Any window with R = 1 (sliding FFT)

In order to continue, let us analyze the relationship between the DTFT and the
DFT of time limited signals. Let Xm(ω) denote the DTFT of the sequence xm(n) =
x(n)w(n−mR), i.e. of the mth windowed frame of x.

• Note that Xm(ω) is defined on the continuous unit circle because xn(m) is defined
over −∞ < n < +∞, although is non-zero only at M samples.

• Each frame, xm(n) has been windowed, and hence is time limited, or band limited
in the time domain.

3.2 Overlap and add 67

• Since xm(n) is time limited to M nonzero samples, we can critically sample Xm(ω)
at the points ωk = 2πk/M , for k = 0, 1, 2, . . . ,M−1, without any loss of information
(dual of the sampling theorem).

• Sampling Xm(ω) to get Xm(ωk) aliases xm(n) into the Mth sample time range
[0,M − 1] (or [−(M − 1)/2, (M − 1)/2])

We can define x̃m , xm(n+mR) as the mth frame shifted back to the time origin.
We have

Xm(ωk) , Xm(ω)|ω=ωk
, ωk ,

2πk
MT

(3.27)

and
X̃m(ωk) , X̃m(ω)|ω=ωk

= ejmRωkXm(ωk) = DFT(x̃m) (3.28)

We see that the DTFT of a signal which is time-limited to the interval [0,M − 1] is
exactly equal at points ωk = 2πk/MT to the length M DFT over the interval [0,M−1].

We are now ready to show the mathematics of the OLA algorithm. Getting back to
the acyclic convolution (for x, y, h ∈ C∞, in general)

y(n) = (x ∗ h)(n)

= ((
∑
m

xm) ∗ h)(n) COLA constraint

=
∑
m

(xm ∗ h)(n) linearity of convolution

=
∑
m

∑
l

x̃m(l −mR)h(n− l)

=
∑
m

∑
l′

x̃m(l′)h(n−mR− l′)

=
∑
m

(DTFT−1(DTFT(x̃m) ·DTFT(h)))(n−mR) convolution theorem for the DTFT

=
∑
m

(DTFT−1(X̃m ·H))(n−mR) (3.29)

In the last equation, we still need to calculate infinite duration DTFTs. At this point
we need to make use of the following facts

• x̃m is time limited to [0,M − 1] (or [−(M − 1)/2, (M − 1)/2])

• We need to assume h is time limited to Nh. This fact implies that x̃m ∗ h will be
time limited to M +Nh − 1

Since x̃m ∗h is time limited, we can sample its DTFT at intervals Ω ≤ 2π
(Nh+M−1)T along

the unit circle.

68 3 Windowing and Short Time Fourier Transform

This last observation implies that we can get by with length N ≥ Nh +M − 1 DFT.
Our final expression is given by:

y(n) =
∑
m

(DFT−1
N (DFTN (x̃m) ·DFTN (h)))(n−mR)

=
∞∑

m=−∞
SHIFTmR(DFT−1{H ·DFTN [Shift−mR(x) · w]}) (3.30)

where H is the length N DFT of h, zero padded out to length N , with N ≥ Nh +M−1.

Frequency domain interpretation of COLA

In the previous section we showed that in order to compute filtering by means of the
OLA algorithm, the following time-domain constraint on the window must be satisfied∑

m

w(n−mR) = 1 (3.31)

We also showed that some popular windows can be used, provided that their length M
and the hop size R are properly selected.

In this section, we provide a frequency-domain interpretation of the COLA con-
straint, i.e. we show how (3.31) is mapped in the frequency domain. This allows, for
example, to design customized windows by means of digital filter design methods (see
Chapter 4) that require frequency-domain specifications as input.

First consider the summation of N complex exponentials

x(n) ,
1
N

N−1∑
k=0

ejωkn =

{
1, n = 0(mod N)
0, elsewhere

= IDFTn(1, 1, · · · , 1) (3.32)

where ωk , 2πk/NT .

Let N = R and T = 1, in which case we have

∑
m

δ(n−mR) =
1
R

R−1∑
k=0

ejωkn (3.33)

where ωk , 2πk/R (harmonics of the frame rate).

Let us consider these equivalent signals as inputs to an LTI system, with an impulse
response given by w(n) and frequency response equal to W (ω).

3.2 Overlap and add 69

Since the input are equal, the corresponding outputs must be equal too:

y(n) =
∑
m

w(n−mR) =
1
R

R−1∑
k=0

W (ωk)ejωkn (3.34)

This derives the Poisson summation formula

∑
m

w(n−mR) =
1
R

R−1∑
k=0

W (ωk)ejωkn ωk ,
2πk
R

(3.35)

• Dual of the sampling theorem

• To reconstruct OLA exactly, we require the constant overlap-add (COLA) constraint
on window ∑

m

w(n−mR) = constant (3.36)

• COLA = W (ωk) = 0, |k| = 1, 2, . . . , R− 1

• COLA assured when window transform is zero at all harmonics of the frame rate

When the COLA condition is met, we have

∑
m

w(n−mR) =
1
R
W (0) (3.37)

• Weak COLA: Window transform has zeros at frame-rate harmonics:

W (ωk) = 0, k = 1, 2, . . . , R− 1, ωk , 2πk/R (3.38)

– Perfect OLA reconstruction

– Relies on aliasing cancellation in frequency domain

– Aliasing cancellation disturbed by spectral modifications

• Strong COLA: Window transform is bandlimited consistent with downsampling by
the frame rate

W (ω) = 0, |ω| ≥ π/R (3.39)

– Perfect OLA reconstruction

– No aliasing

– Ideal for spectral modifications

– Time domain window infinitely long

70 3 Windowing and Short Time Fourier Transform

Listing 3.3. Matlab

c l e a r
[x , Fs , nb i t s] = wavread (’ . . / f i l e s o u r c e s / f l u t e . w a v ’) ;

% anti−a l i a s i n g to be sampled at 8000 Hz ;
Wn = 2∗4000/Fs ; % normal ized cut−o f f f requency
N h = 51;
h = f i r 1 (N h−1,Wn) ’ ; % FIR f i l t e r des ign (window method)

[H, omega] = f r eq z (h , 1 , 1 0 00) ; f = Fs∗omega/2∗ pi ;

f i g u r e (1)
subplot (2 , 1 , 1) p lo t (f , 20∗ log10 (abs (H)))
subplot (2 , 1 , 2) p lo t (f , phase (H))

M = 0.050∗Fs ; %window length (50msec)
R = f l o o r (M/2) ; %hop s i z e
N = 4096 %power o f 2 l a r g e r than M + N h − 1

% weak COLA − nu l l s at f r e qu en c i e s w k = 2∗ pi∗k/R
w = ba r t l e t t (M) ;

f i g u r e (2)
[W, omega] = f r eq z (w, 1 , 1 0000) ;

subplot (2 , 1 , 1)
p lo t (omega , 20∗ log10 (abs (W)))
subplot (2 , 1 , 2)
p lo t (omega , phase (W))

% strong COLA − W = 0 , |w| > pi /R
% f = [0 1/R 1] ; m = [R 0 0] ; w = f i r 2 (M − 1 , f ,m) ’ ;

% f i g u r e (2)
% [W, omega] = f r eq z (w, 1 , 1 0000) ;

% subplot (2 ,1 , 1)
% plot (omega , 20∗ log10 (abs (W)))
% subplot (2 ,1 , 2)
% plot (omega , phase (W))

y = zero s (l ength (x) , 1) ;
xm = zero s (M, 1) ;
ym = zero s (M, 1) ;

% check time domain COLA cons t r a i n t
f o r m = 0 : f l o o r ((l ength (x)−N)/R)

ym = w;
y (m∗R+1:m∗R+M) = y(m∗R+1:m∗R+M) + ym;

end

f i g u r e (3) p lo t (y)

H = f f t (h , N) ;

f o r m = 0 : f l o o r ((l ength (x)−N)/R)

xm = x(m∗R+1:m∗R+M) ;

ym = w.∗xm;
ym = i f f t (H.∗ f f t (ym, N)) ;

y (m∗R+1:m∗R+N) = y(m∗R+1:m∗R+N) + ym;

end

Short Time Fourier Transform (STFT)

In the previous section we have defined Xm = DTFT [xm]. This is the Short Time
Fourier Transform (STFT).

3.2 Overlap and add 71

• It is a function of both time m and frequency ωk

• The STFT is one example of a time-frequency distribution

• M determines time and frequency resolution of the data frame

• N determines time and frequency resolution of spectral modifications

– N depends upon M

• Since we are using the DFT, frequency bins are linearly spaced

We notice that when STFT is used only as an analysis tool, i.e. no signal is synthe-
sized in output by recombining the blocks together, we are left with greater flexibility in
the choice of the window. In other words, the COLA constraint must not be satisfied. In
this scenario, which occurs often in practice when analyzing audio signals, the choice of
the parameters of the STFT is performed on the basis of the following considerations:

• The window length M determines the frequency resolution. An higher value of M
implies closer spacing between frequency bins (ΩM = 2π/M).

• The type of the window determines the trade-off between main-lobe width (thus
affecting frequency resolution) and side-lobe level.

• If the length of the FFT N is chosen greater than M , bandlimited interpolation of
spectral samples is performed. Typically N is chosen to be a power of 2 to speed up
the computation of the FFT.

• The hope size R determines the temporal resolution.

Listing 3.4. Matlab

[x , Fs , nb i t s] = wavread (’ . . / f i l e s o u r c e s / f l u t e . w a v ’) ;

M = f l o o r (0 .050∗Fs) ; %window length (50msec)
R = f l o o r (M/4) ; %hop s i z e
N = 2ˆ14; %power o f 2 l a r g e r than M + N h − 1

w = hanning (M) ;

xm = zero s (M, 1) ; ym = zero s (M, 1) ;

Nframes = f l o o r ((l ength (x)−N)/R) + 1 ;

STFT = zero s (Nframes , N/2) ;

f o r m = 0 : Nframes

xm = x(m∗R+1:m∗R+M) ;

ym = w.∗xm;

temp = abs (f f t (ym, N)) ;

STFT(m+1 ,:) = temp (1 :N/2) ;
end

STFT = f l i p l r (STFT) ’ ;
t = [0 : Nframes − 1]∗R/Fs ;
f = Fs ∗ [0 :N/2 − 1]/N;
imagesc (t , f , 10∗ log10 (abs (STFT) . ˆ 2))
x l abe l (’ t i m e (s e c) ’) ;
y l abe l (’ f r e q u e n c y (H z) ’) ;

72 3 Windowing and Short Time Fourier Transform

time (sec)

fr
eq

ue
nc

y
(H

z)

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

x 10
4

a) Flute

time (sec)
fr

eq
ue

nc
y

(H
z)

0 0.5 1 1.5

0

500

1000

1500

2000

2500

3000

3500

4000

b) Guitar

Fig. 3.13. Short-time Fourier transform of a flute (a) and a guitar (b).

4

Digital filter design techniques

The design of a digital filter involves three basic steps:

• the specification of the desired properties of the system

• the approximation of these properties using a discrete-time system

• the realization of the system using finite precision arithmetic

In this chapter, we consider the first two steps, describing a few simple filter design
algorithms, distinguishing between IIR and FIR filter design. Further details about more
sophisticated design techniques and the implementation of digital filters using finite
precision arithmetic can be found in the references listed at the end of this chapter.

4.1 Filter specifications

Filter specifications are often given in the frequency domain. For the case of lowpass
filter, for example, the specifications take the form of a tolerance scheme, such as depicted
in Figure 4.1.

There is a passband wherein the magnitude of the response must approximate 1 with
an error of ±δ, i.e.

1− δ1 ≤ |H(ejω)| ≤ 1 + δ1, |ω| ≤ ωp (4.1)

There is a stopband in which the magnitude response must approximate zero with an
error less than δ2, i.e.

|H(ejω)| ≤ δ2, ωs ≤ |ω| ≤ π (4.2)

To make it possible to approximate the ideal lowpass filter in this way we must also
provide a transition band of nonzero width (ωs − ωp) in which the magnitude response
drops smoothly from the passband to the stopband

74 4 Digital filter design techniques

Transition

Passband Stopband

Fig. 4.1. Tolerance limits for approximation of ideal lowpass filter

4.2 IIR filter design

Design of IIR filters from analogue filters

The traditional approach consists in designing digital IIR filters transforming a known
analogue filter. This is a reasonable approach because:

• the art of analogue filter design is highly advanced

• many useful analogue design methods have relatively simple closed-form design for-
mulas

• in many applications it is of interest to use a digital filter to simulate the performance
of an analogue linear time-invariant filter

The filter design algorithm proceeds as follows

1. Provide the specifications of the digital filter in the frequency domain Hd(ω), −π ≤
ω ≤ +π.

2. Translate the specifications of the digital filter into equivalent specifications of an
analogue filter Ha(Ω), −∞ ≤ Ω ≤ +∞

3. Design an analogue filter Ha(Ω) that satisfies the specifications

4.2 IIR filter design 75

4. Find the transfer functionHa(s) of the analogue filter corresponding to the frequency
response Ha(Ω).

5. Find the transfer function H(z) of the digital filter by applying a proper transfor-
mation from the s-domain to the z-domain.

Before describing this procedure in detail, let us review some important concepts
related to analogue filters. Consider an analogue system function

Ha(s) =
∑M

k=0 dks
k∑N

k=0 cks
k

=
Ya(s)
Xa(s)

(4.3)

where xa(t) is the input and ya(t) is the output and Xa(s) and Ya(s) are their respective
Laplace transforms. An alternative representation of the same system is obtained by
means of the differential equation

N∑
k=0

ck
dkya(t)
dtk

=
M∑

k=0

dk
dkxa(t)
dtk

(4.4)

The corresponding rational system function for digital filters has the form

H(z) =
∑M

k=0 bkz
−k∑N

k=0 akz−k
=
Y (z)
X(z)

(4.5)

or, equivalently, by the difference equation

N∑
k=0

aky(n− k) =
M∑

k=0

bkx(n− k) (4.6)

We are interested in finding a transformation that allows us to find a digital system
from its analogue counterpart and vice-versa. Specifically, in transforming an analogue
system to a digital system we must obtain h(n) or H(z) from the analogue filter design.
In such transformations we generally require that the essential properties of the analogue
frequency response be preserved in the frequency response of the resulting digital filter.

Loosely speaking, this implies that we want the imaginary axis of the s-plane to map
into the unit circle of the z-plane. A second condition is that a stable analogue filter
should be transformed to a stable digital filter. That is, if the analogue system has poles
only in the left-half s-plane, then the digital filter must have poles only inside the unit
circle.

In the following, we consider two transformations that attain this goal: bilinear trans-
formation and impulse response invariance. We will show that only the former is ade-
quate as far as filter design is concerned.

76 4 Digital filter design techniques

Bilinear transformation

Consider the following first-order differential equation

c1y
′
a(t) + c0ya(t) = d0xa(t) (4.7)

where y′a(t) is the first derivative of ya(t). The corresponding analogue system function
is

Ha(s) =
d0

c1s+ c0
(4.8)

We can write ya(t) as an integral of y′a(t), as in

ya(t) =
∫ t

t0

y′a(t)dt+ ya(t0) (4.9)

In particular, if t = nT and t0 = (n− 1)T ,

ya(nT) =
∫ nT

(n−1)T

y′a(t)dt+ ya((n− 1)T) (4.10)

If the integral is approximated by the trapezoidal rule, we can write

ya(nT) = ya((n− 1)T) +
T

2
[y′a(nT) + y′a((n− 1)T)] (4.11)

However, from equation (4.7)

y′a(nT) =
−c0
c1

ya(nT) +
d0

c1
xa(nT) (4.12)

Substituting into equation (4.11) we obtain

[y(n)− y(n− 1)] =
T

2

[
−c0
c1

(y(n) + y(n− 1)) +
d0

c1
(x(n) + x(n− 1)

]
(4.13)

where x(n) = xa(nT) and y(n) = ya(nT). Taking the z-transform and solving for H(z)
gives

H(z) =
Y (z)
X(z)

=
d0

c1
2
T

1−z−1

1+z−1 + c0
(4.14)

From equation (4.8) it is clear that H(z) is obtained from Ha(s) by substitution

s =
2
T

1− z−1

1 + z−1
(4.15)

That is
H(z) = Ha(s)|

s= 2
T

1−z−1

1+z−1
(4.16)

4.2 IIR filter design 77

−20 −15 −10 −5 0 5 10 15 20
−6

−4

−2

0

2

4

6

Ω

ω

ω = 2 tan−1 (Ω T / 2)

Fig. 4.2. Mapping of the analogue frequency axis onto the unit circle using the bilinear trans-
formation

This result can be shown to hold in general since an Nth order differential equation can
be written as a set of N first order equations of the form (4.7).

Solving (4.15) for z gives

z =
1 + (T/2)s
1− (T/2)s

(4.17)

To demonstrate that this mapping has the property that the imaginary axis in the
s-plane maps onto the unit circle, consider z = ejω:

s =
2
T

1− z−1

1 + z−1

=
2
T

1− e−jω

1 + ejω

=
2
T

j sin(ω/2)
cos(ω/2)

=
2
T
j tan(ω/2) = σ + jΩ (4.18)

Thus, for z on the unit circle, σ = 0 and Ω and ω are related by

TΩ

2
= tan(ω/2) (4.19)

In addition to the fact that the imaginary axis in the s-plane maps to the unit circle
in the z-plane, the left half of the s-plane maps to the inside of the unit circle and the
right half of the s-plane maps to the outside of the unit circle.

Example: RC system

78 4 Digital filter design techniques

Consider a RC system, described by the following frequency response

Vr(Ω) =
E(Ω)

1 + jΩτ
, τ = RC (4.20)

In the discrete case, e(t) is sampled as e(n). Using the bilinear transformation, the digital
transfer function becomes

V (z)
E(z)

=
1

1 + τ 2
T

1−z−1

1+z−1

=
1 + z−1

1 + a+ (1− a)z−1
a =

2τ
T

(4.21)

Taking the inverse z transform we get

v(n) =
a− 1
a+ 1

vn−1 +
1

1 + a
(e(n) + e(n− 1)) (4.22)

The pole is within the unit circle, in fact.∣∣∣∣a− 1
a+ 1

∣∣∣∣ < 1 if τ > 0 (4.23)

Analogue filter prototypes

Filter design starts by selecting an analogue filter prototype that matches the charac-
teristics of the desired frequency response. Below, we consider the following families of
analogue filters:

• Butterworth filters

– the squared magnitude frequency response has the form

|Ha(Ω)|2 =
1

1 + (Ω/Ωc)2N
(4.24)

– the analogue transfer function is

Ha(s) =
ΩN

c∏N
i=0(s− si)

(4.25)

where the poles si can be found with these equations (proof is omitted)

· If N is odd: Ωce
jmπ/N , 0 ≤ m < 2N , such that Re{s} < 0

· If N is even: Ωce
jπ/2N+mπ/N , 0 ≤ m < 2N , such that Re{s} < 0

– magnitude response is maximally flat in the passband

4.2 IIR filter design 79

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Ω

am
pl

itu
de

Fig. 4.3. Dependence of Butterworth magnitude characteristics on the order N

– for an N order lowpass filter, this means that the first 2N − 1 derivatives of the
squared magnitude function are zero at Ω = 0

– approximation is monotonic in the passband and stopband

– as the parameter N increases, the filter characteristics becomes sharper

• Chebychev filters

– magnitude of the frequency response is either equiripple in the passband and
monotonic in the stopband or monotonic in the passband and equiripple in the
stopband

– the accuracy of the approximation is uniformly distributed over the passband or
the stopband

• Elliptic filters

– magnitude of the frequency response is equiripple both in the passband and in
the stopband

– it is possible to meet filter specifications with a lower order than Butterworth
and Chebychev filters

For the Butterworth filter, we provide a step-by-step design procedure that starts
from specifications of the digital filter in the ω domain. As an example, let us consider
the design of a Butterworth lowpass digital filter.

1. Provide the specifications of the digital filter in the frequency domain:

80 4 Digital filter design techniques

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Ω

am
pl

itu
de

Fig. 4.4. Frequency response of a ninth-order analog Chebychev filter

• passband: [0− 0.2π], constant within 1dB

• stopband: [0.3π, π], attenuation greater than 15db

20 log10 |H(ej0.2π)| ≥ −1 20 log10 |H(ej0.3π)| ≤ −15 (4.26)

2. Translate the specifications of the digital filter into equivalent specifications of an
analogue filter Ha(Ω). Applying the bilinear transformation we get

20 log10 |Ha(j2 tan(0.2π/2))| ≥ −1 20 log10 |Ha(j2 tan(0.3π/2))| ≤ −15 (4.27)

3. Design an analogue filter Ha(Ω) that satisfies the specifications Solving the previous
equations with equality gives

1 +
(

2 tan(0.1π)
Ωc

)2N

= 100.1 (4.28)

1 +
(

2 tan(0.15π)
Ωc

)2N

= 101.5 (4.29)

so
N =

1
2

log[(101.5 − 1)/(100.1 − 1)]
log[tan(0.15π)/ tan(0.1π)]

= 5.30466 (4.30)

In order to meet the specifications, N must be chosen as 6. If we determine Ωc by
substituting N = 6, we obtain Ωc = 0.76622.

4. Find the transfer functionHa(s) of the analogue filter corresponding to the frequency
response Ha(Ω).

4.2 IIR filter design 81

0 1 2 3
−100

−80

−60

−40

−20

0

analogue filter H
a
(s)

G
ai

n
(d

B
)

frequency (radians /sec)

0 1 2 3
−4

−2

0

2

4

P
ha

se
 (

ra
di

an
s)

frequency (radians /sec)

0 1 2 3
−100

−80

−60

−40

−20

0
digital filter H(z)

G
ai

n
(d

B
)

frequency (radians /sec)

0 1 2 3
−4

−2

0

2

4

P
ha

se
 (

ra
di

an
s)

frequency (radians /sec)

Fig. 4.5. Frequency response of a sixth-order Butterworth filter

5. Find the transfer function H(z) of the digital filter by applying the inverse bilinear
transformation from the s-domain to the z-domain.

Listing 4.1. Matlab

% d i g i t a l specs
% [0 − 0 .2 pi] within 1dB
% [0 . 3 − pi] below −15dB

% analogue f i l t e r des ign
[c , d] = butter (6 ,0 .76622 , ’ s ’) ;
[Ha , Omega] = f r e q s (c , d) ;

subplot (2 , 2 , 1) , p l o t (Omega , 20∗ log10 (abs (Ha))) ;
t i t l e (’ a n a l o g u e f i l t e r H _ a (s) ’) ;
y l abe l (’ G a i n (d B) ’) ; x l abe l (’ f r e q u e n c y (r a d i a n s / s e c) ’) ; ax i s ([0 p i −100 0])

subplot (2 , 2 , 3) , p l o t (Omega , angle (Ha)) ;
y l abe l (’ P h a s e (r a d i a n s) ’) ; x l abe l (’ f r e q u e n c y (r a d i a n s / s e c) ’) ; ax i s ([0 p i −4 4])

% d i g i t a l f i l t e r des ign
[b , a] = b i l i n e a r (c , d , 1) ; [H, omega] = f r eq z (b , a) ;

subplot (2 , 2 , 2) , p l o t (omega , 20∗ log10 (abs (H))) ;
t i t l e (’ d i g i t a l f i l t e r H (z) ’) ;
y l abe l (’ G a i n (d B) ’) ; x l abe l (’ f r e q u e n c y (r a d i a n s / s e c) ’) ; ax i s ([0 p i −100 0])

subplot (2 , 2 , 4) , p l o t (omega , angle (H)) ;
y l abe l (’ P h a s e (r a d i a n s) ’) ; x l abe l (’ f r e q u e n c y (r a d i a n s / s e c) ’) ; ax i s ([0 p i −4 4])

Listing 4.2. Matlab

fp = 0 . 2 ; %passband ends (1 −−> omega = pi)
f s t = 0 . 3 ; %passband beg ins
ap = 1 ; %r i pp l e in the passband (dB)
ast = 15 ; %attenuat ion in the stopband (dB)

82 4 Digital filter design techniques

d = fde s i gn . lowpass (fp , f s t , ap , as t) ; hd = des ign (d , ’ b u t t e r ’) ;
% hd = des ign (d , ’ cheby1 ’) ;
% hd = des ign (d , ’ cheby2 ’) ;
% hd = des ign (d , ’ e l l i p ’) ;

f v t o o l (hd)

%see a l s o
%fda too l

Impulse invariance

Another way to transform an analog filter into a digital filter consists in sampling the
impulse response of the analogue filter. Consider, for example, the following frequency
response of an analogue filter

Ha(jΩ) =
1

1 + jΩτ
←→ h(t) =

1
τ
e−t/τ (4.31)

Sampling the impulse response gives

h(n) =
T

τ
e−nT/τ ←→ H(z) =

T

τ

1
1− e−T/τz−1

(4.32)

Stable systems are transformed into stable systems, impulse responses are similar, but
frequency responses are rather different apart from very low frequencies and T << τ .
In fact, sampling is performed without prefiltering, thus causing aliasing.

In conclusion, it should be noted that the impulse invariance design procedure is
only appropriate for essentially bandlimited filters. For example, highpass and bandstop
filters would require additional band-limiting to avoid severe aliasing distortions.

Least squares inverse design

In this procedure, the filter is specified in terms of the first L samples of the desired
impulse response

{hd(n)}, n = 0, 1, . . . , L− 1 (4.33)

In our discussion, we shall assume that the filter transfer function is of the form

H(z) =
b0

1−
∑N

r=1 arz−r
(4.34)

The filter design is based on the criterion that the output of the inverse of H(z) must
approximate a unit sample, when the input is hd(n). If v(n) denotes the output of the
inverse system with transfer function 1/H(z), then

4.2 IIR filter design 83

V (z) =
Hd(z)
H(z)

(4.35)

Thus we can write the recursion formula

b0v(n) = hd(n)−
N∑

r=1

arhd(n− r) (4.36)

Recall that we want v(n) be a unit sample. Thus it is reasonable to require that

b0 = hd(0) (4.37)

and that v(n) be as small as possible for n > 0. Therefore, choose the remaining coeffi-
cients so as to minimize

E =
∞∑

n=1

(v(n))2 (4.38)

From equation (4.36),

E =
1
b20

∞∑
n=1

(hd(n))2 − 2
∞∑

n=1

hd(n)
N∑

r=1

arhd(n− r) +
∞∑

n=1

[
N∑

r=1

arhd(n− r)

]2

(4.39)

The coefficients ai that minimize E satisfy the equations

∂E

∂ai
= 0 i = 1, 2, . . . , N (4.40)

This results in

N∑
r=1

ar

∞∑
n=1

hd(n− r)hd(n− i) =
∞∑

n=1

hd(n)hd(n− i) (4.41)

If we define φ(i, r) as

φ(i, r) =
∞∑

n=1

hd(n− r)hd(n− i) (4.42)

Then the coefficients ai satisfy the set of linear equations

N∑
r=1

arφ(i, r) = φ(i, 0), i = 1, 2, . . . , N (4.43)

This equations can be solved by any conventional technique. A particularly efficient
procedure is given by Levinson (see Section 8.4).

Listing 4.3. Matlab

c l e a r
% approximate butterworth f i l t e r des ign

84 4 Digital filter design techniques

% fp = 0 . 2 ; %passband ends (1 −−> omega = pi)
% f s t = 0 . 3 ; %passband beg ins
% ap = 1 ; %r i pp l e in the passband (dB)
% ast = 15 ; %attenuat ion in the stopband (dB)
%
% d = fde s i gn . lowpass (fp , f s t , ap , as t) ;
% h f i l t e r = des ign (d , ’ butter ’) ;
%
% % compute impulse response
% sos = h f i l t e r . sosMatrix ;
% [S , K] = s i z e (sos) ;
%
% g = h f i l t e r . Sca leValues ;
%
% b = sos (: , 1 :K/2) ;
% a = sos (: ,K/2+1: end) ;
%
% de l ta = [1 ; z e ro s (2 0 0 , 1)] ;
% y = de l ta ;
%
% fo r s = 1 : S
% y = g (s)∗ f i l t e r (b(s , :) , a (s , :) , y) ;
% end
%
% y = g (S+1)∗y ;

% approximate IIR zero−pole f i l t e r
de l t a = [1 ; z e ro s (2 0 0 , 1)] ;
a = [1 0 .9 0 .32 0 .2 0 .1 0 . 0 5] ;
b = [1 1 1] ;
y = f i l t e r (b , a , de l t a) ;

% inve r s e l e a s t squares des ign
L = 40 ;
N = 10 ;

hd = y (1 :L) ;

[phi , l a g s] = xcorr (hd , N) ; phi = phi (N+1:end) ;

[a l s , e] = l ev in son (phi ,N) ;

h = f i l t e r (sq r t (e) , a l s , d e l t a) ;

stem (y) hold on stem (h , ’ r - - ’)
hold o f f

4.3 FIR filter design

Design of FIR filters using windows

The most straightforward approach to FIR filter design is to obtain a finite-length
impulse response by truncating an infinite duration impulse response sequence. If we
suppose that Hd(ejω) is an ideal desired frequency response, then

Hd(ejω) =
∞∑

n=−∞
hd(n)e−jωn (4.44)

where hd(n) is the corresponding impulse response sequence, i.e.

hd(n) =
1
2π

∫ +π

−π

Hd(ejω)ejωndω (4.45)

4.3 FIR filter design 85

In general, hd(n) is of infinite duration and it must be truncated to obtain a finite
duration impulse response. Therefore, we can represent h(n) as the product of the desired
impulse response and a finite-duration window w(n)

h(n) = hd(n)w(n) (4.46)

Using the convolution theorem of the DTFT we see that

H(ejω) =
1
2π

∫ +π

−π

Hd(ejω)W (ej(ω−θ))dθ (4.47)

That is H(ejω) is the periodic continuous convolution of the desired frequency response
with the Fourier transform of the window. Thus, the frequency response H(ejω) will be
a smeared version of the desired response Hd(ejω).

If W (ejω) is narrow compared to variations in Hd(ejω), then H(ejω) will look like
Hd(ejω). Thus the choice of window is governed by the desire to have w(n) as short as
possible in duration so as to minimize computation in the implementation of the filter,
while having W (ejω) as narrow as possible in frequency so as to faithfully reproduce the
desired frequency response. These are conflicting requirements.

The windows described in Section 3 can be conveniently used to this purpose.
Through the choice of the window shape and duration, we can exercise some control
over the design process. For example, for a given stopband attenuation, it is generally
true that N satisfies an equation of the form

N =
A

∆ω
(4.48)

where ∆ω is the transition width (roughly the width of the main lobe of W (ejω) and A
is a constant that is dependent upon the window shape.

A difficulty with this technique is in the evaluation of hd(n) from the frequency
response Hd(ejω). If the latter cannot be expressed in terms of simple functions, an
approximation to hd(n) can be obtained using the frequency sampling method described
below.

Listing 4.4. Matlab

N = 30; %f i l t e r order
Wc = 0 . 2 ; %cu t o f f f requency
b = f i r 1 (N,Wc, ka i s e r (N+1, 5)) ; %des ign lowpass f i l t e r
f i g u r e (1) f r e q z (b , 1 , 2 0 48) ;
f i g u r e (2) stem (b) ;

86 4 Digital filter design techniques

Design of FIR filters using frequency sampling

Given a desired frequency response, the frequency sampling design method designs a
filter with a frequency response exactly equal to the desired response at a particular set
of frequencies ωk.

Assume that we wish to design a FIR filter with an impulse response h(n) for n =
0, . . . ,M − 1, that approximates a desired frequency response Hd(ω). In order to do
this, we sample the frequency response Hd(ω) and we compute h(n) by performing the
IDFT, i.e.:

H(k) = Hd(ejω)
∣∣
ω=2πk/M

(4.49)

h(n) =
1
M

M−1∑
k=0

H(k)ej 2πkn
M (4.50)

The frequency response of the FIR filter obtained above is given by its DTFT, i.e.:

H(ejω) =
M−1∑
n=0

h(n)e−jωn

=
M−1∑
n=0

[
1
M

M−1∑
k=0

H(k)ej 2πkn
M

]
e−jωn

=
1
M

M−1∑
k=0

H(k)
M−1∑
n=0

ej(2πk
M −ω)n (4.51)

This expression means that the actual frequency response H(ejω) matches the de-
sired frequency response Hd(ejω) at frequencies ωk = 2πk

M . At other frequencies, H(ejω)
is obtained by interpolating between H(k) samples. The main problem of frequency
sampling design is that H(ejω) might be very different from Hd(ejω) at points ω 6= ωk.

In the time domain, frequency sampling causes aliasing. In fact

h(n) =
1
M

M−1∑
k=0

H(k)ej 2πkn
M =

1
M

M−1∑
k=0

Hd(ej2πk/M)ej 2πkn
M =

∞∑
r=−∞

hd(n+ rM) (4.52)

The last equality stems from the Poisson formula that is introduced in Section 3.

Figure 4.6 shows the desired (blue) and actual (green) frequency response obtained by
sampling the desired frequency response of an ideal low-pass filter with cut-off frequency
π/2. The phase of the desired filter is chosen to be linear, i.e. ∠Hd(ejω) = ejω(M−1)/2.
In design (a) the transition is quite sharp, thus causing a noticeable overshoot at the
start of the transition region. In design (b) the first zero sample in the transition region

4.3 FIR filter design 87

0 2 4 6
0

0.2

0.4

0.6

0.8

1

design a)

frequency (radians /sample)

ga
in

0 2 4 6

−60

−40

−20

0

frequency (radians /sample)

ga
in

 (
dB

)

0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2
design b)

frequency (radians /sample)

ga
in

0 2 4 6

−60

−40

−20

0

frequency (radians /sample)

ga
in

 (
dB

)

0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2
design c)

frequency (radians /sample)

ga
in

0 2 4 6

−60

−40

−20

0

frequency (radians /sample)

ga
in

 (
dB

)

Fig. 4.6. Design of a low-pass FIR filter by frequency sampling.

has been changed to 0.5, resulting in a wider transition region, but far less overshoot.
In design (c) the first two samples in the transition region are set to 0.75 and 0.25,
enlarging the transition region but further decreasing the overshoot.

Listing 4.5. Matlab

% id e a l low−pass f i l t e r
Fc = 0 . 2 5 ; %normal ized cut−o f f f requency
M = 33; % number o f f i l t e r taps
N = 1024

kd = [0 : N − 1]/N;
Hd = zero s (l ength (kd) , 1) ;
Hd(kd < Fc | kd > 1 − Fc) = 1 ;

88 4 Digital filter design techniques

k = [0 : M − 1]/M;
H = zero s (l ength (k) , 1) ; H(k < Fc | k > 1 − Fc) = 1 ;

h = f f t s h i f t (i f f t (H)) ;
Hr = f r eq z (h ,1 ,2∗ pi∗kd) ;

subplot (3 , 2 , 1)
p lo t (2∗ pi∗kd , abs (Hd) , ’ b ’ , ’ L i n e W i d t h ’ , 2) ;
ax i s ([0 2∗ pi 0 1 . 2])
hold on
p lo t (2∗ pi∗k , abs (H) , ’ r o ’ , ’ L i n e W i d t h ’ , 2) ;
p l o t (2∗ pi∗kd , abs (Hr) , ’ g ’) ;
t i t l e (’ d e s i g n a) ’) ;
x l abe l (’ f r e q u e n c y (r a d i a n s / s a m p l e) ’) ;
y l abe l (’ g a i n ’) ;

subplot (3 , 2 , 2)
p lo t (2∗ pi∗kd , 20∗ log10 (abs (Hd)) , ’ b ’ , ’ L i n e W i d t h ’ , 2) ;
ax i s ([0 2∗ pi −70 5])
hold on
p lo t (2∗ pi∗k , 20∗ log10 (abs (H)) , ’ r o ’ , ’ L i n e W i d t h ’ , 2) ;
p l o t (2∗ pi∗kd , 20∗ log10 (abs (Hr)) , ’ g ’) ;
x l abe l (’ f r e q u e n c y (r a d i a n s / s a m p l e) ’) ;
y l abe l (’ g a i n (d B) ’) ;

Listing 4.6. Matlab

f = [0 0 .50 0 .50 1] ;
m = [1 1 0 0] ;
N = 30 ; %f i l t e r order
b = f i r 2 (N, f ,m,1024 ,1 , rectwin (N+1))

% f = [0 0 .2 0 .2 0 .4 0 .4 0 .6 0 .6 0 .8 0 .8 1 . 0] ;
% m = [0 0 1 1 0 0 1 1 0 0] ;
% N = 31; %f i l t e r order
% b = f i r 2 (N, f , m) ;

[H, w] = f r eq z (b , 1 , 1024) ;

f i g u r e (2)
subplot (2 , 1 , 1) p lo t (f , m) hold on
p lo t (w/pi , abs (H) , ’ r - - ’) hold o f f

subplot (2 , 1 , 2) stem (b)

4.4 Optimum FIR filter design

Suppose that we want to design a lowpass filter according to the tolerance scheme showed
in Fig 4.1. There are, of course, five parameters to specify: the passband upper limit
ωp, the stopband lower limit ωs, the maximum error in the passband (δ1) and in the
stopband (δ2), and the filter order N . We want the filter to be real and linear phase, so
we can write its frequency response as:

H(ejω) = h(0) +
M∑

n=1

2h(n) cos(ωn) (4.53)

where h(n) is the symmetric impulse response of the filter and N = 2M + 1. A causal
system can be simply obtained by delaying h(n) by M samples. Design algorithms
have been developed in which some of the parameters are fixed and the best values of

4.4 Optimum FIR filter design 89

the remaining ones are found by an iterative procedure. Parks and McClellan found a
solution to the problem in the particular case in which the fixed parameters are M , ωp

and ωs. The desired filter frequency response is:

Hd(ejω) =

{
1 0 ≤ ω ≤ ωp

0 ωs ≤ ω ≤ π
(4.54)

We define over the passband and the stopband the approximation error function

E(ω) = W (ω)[Hd(ejω)−H(ejω)] (4.55)

where W (ω) is a weighting function that specifies the relative sizes of the passband and
stopband approximation errors and can be defined as:

W (ω) =

{
1/K 0 ≤ ω ≤ ωp

1 ωs ≤ ω ≤ π
(4.56)

K should be equal to the desired ratio δ1/δ2, so that the optimum filter is the one which
minimizes max |E(ω)|, which is equivalent to minimize δ2. Parks and McClellan showed
that the following theorem holds:

Alternation Theorem. in order that H(ejω) be the unique best approximation to
Hd(ejω) over the passband and the stopband, it is necessary and sufficient that E(ω)
exhibits at least M + 2 ”alternations”, thus E(ωi) = −E(ωi−1) = max |E(ω)| with
ω0 ≤ ω1 ≤ ω2 ≤ . . . ≤ ωM+1 and ωi contained either in the passband or in the stopband.

Since Hd(ejω) is piecewise constant, the frequencies ωi corresponding to the peaks in
the error function (4.55) are the frequencies at which H(ejω) meets the error tolerance,
i.e. the frequencies ω in the passband at which H(ejω) = 1 ± δ1 and the frequencies ω
in the stopband at which H(ejω) = ±δ2.

We want H(ejω) to have an equiripple behavior, so that the approximation error is
spread out uniformly in frequency. It can be showed that this implies that H(ejω) has
either a local maximum or a local minimum at ω = 0 and ω = π. Furthermore, there are
at most M − 1 local extrema in the opened interval (0, π) and we have H(ejω) = 1− δ1
in ω = ωp and H(ejω) = δ2 in ω = ωs. Thus, we always have (M −1)+2 = M +1 peaks
in the error function. In accord to the alternation theorem, we need one more peak to
reach optimality, and we can get it just by setting either H(ejω) = 1 ± δ1 in ω = 0 or
H(ejω) = ±δ2 in ω = π. We can also choose to impose both the conditions, obtaining
M + 3 peaks in the error function.

90 4 Digital filter design techniques

These considerations lead Parks and McClellan to develop the following algorithm:

1. Estimate M + 2 frequencies ω0 ≤ ω1 ≤ ω2 ≤ . . . ≤ ωM+1 at which |E(ω)| has to be
maximum. Note that, since ωp and ωs are fixed, for some k such that 0 < k < M +1
we need ωk = ωp and ωk+1 = ωs. Furthermore, we can choose ω0 = 0 or ωM+1 = π

or both.

2. Compute the error function in the estimated frequencies and impose that it equals
the magnitude of the peak error p, obtaining by means of (4.53) and (4.55) the set
of M + 2 equations

W (ωi)[Hd(ejω)− h(0)−
M∑

n=1

2h(n) cos(ωin)] = (−1)i+1p i = 0, 1, . . . ,M + 1

(4.57)
in the M + 2 unknowns p and h(n) for n = 0, 1, . . . ,M .

3. Solve the set of equations (4.57) only for p and determine the trigonometric polyno-
mial which has the correct value at the frequencies ωi, i.e. 1±Kp in the passband
and ±p in the stopband. It’s possible, of course, to solve the set of equations (4.57)
for all the M + 2 unknowns, but this is not an efficient approach.

4. Get the new estimate of the extremum frequencies ωi as the frequencies correspond-
ing to the peaks of the interpolating polynomial, and iterate until convergence, i.e.
until the variation of p is lower than a fixed threshold.

5. Finally, compute h(n) as the IDFT of the sampled version of the optimum frequency
response, i.e. the last interpolating polynomial.

Estimation of FIR filter order

It has been shown that the filter order N is related to the filter specifications by means
of the following approximate formula

N '
−20 log10(

√
δpδs)− 13

14.6(ωs − ωp)/2π
(4.58)

Note from the above formula that the filter order N of a FIR filter is inversely propor-
tional to the transition bandwidth (ωs−ωp) and does not depend on the actual location
of the transition band. This implies that a sharp cutoff FIR filter with a narrow transi-
tion band would be of very long length, whereas a FIR filter with a wide transition band
will have a very short length. Another interesting property is that the length depends

4.5 Selection of filter type 91

on the product δpδs. This implies that if the values of δp and δs are interchanged, the
length remains the same.

The formula provides a reasonably good estimate of the filter order in the case of
FIR filters with moderate passband width and may not work well in the case of very
narrow passband or very wide passband filters. In the case of a narrowband filter, the
stopband ripple essentially controls the order and an alternative formula provides a more
reasonable estimate of the filter order

N ' −20 log10(δs) + 0.22
(ωs − ωp)/2π

(4.59)

On the other hand, in the case of a very wide band filter, the passband ripple has more
effect on the order, and a more reasonable estimate of the filter order can be obtained
using the following formula

N ' −20 log10(δp) + 5.94
27(ωs − ωp)/2π

(4.60)

4.5 Selection of filter type

An important issue is the selection of filter type, i.e. whether an IIR of a FIR digital
filter is to be employed.

For IIR digital filters, the IIR transfer function is a real rational function of z−1:

H(z) =
b0 + b1z

−1 + . . .+ bMz−1

1 + a1z−1 + . . .+ aNz−N
(4.61)

Moreover, H(z) must be a stable transfer function, and for reduced computational com-
plexity, it must be of lowest order N .

On the other end, for FIR filter design, the FIR transfer function is a polynomial in
z−1:

H(z) =
N∑

k=0

h(n)z−n (4.62)

For reduced computational complexity, the degree N of H(z) must be as small as pos-
sible. In addition, if linear phase is desired, then the FIR filter coefficients must satisfy
the constraint:

h(n) = h(N − 1− n) (4.63)

There are several advantages in using a FIR filter, since it can be designed with exact
linear phase and the filter structure is always stable when quantized. However, in most

92 4 Digital filter design techniques

cases, the order NFIR of an FIR filter is considerably higher than the order NIIR of an
equivalent IIR filter meeting the same magnitude specifications. It has been shown that
for most practical filter specifications, the ratio NFIR/NIIR is typically of the order of
tens or more and, as a result, the IIR filter is usually computationally more efficient.
However, if the group delay of the IIR filter is equalized by cascading an allpass equalizer,
then the savings in computation may no longer be that significant. In many applications,
the linearity of the phase response of the digital filter is not an issue, making the IIR
filter preferable because of the lower computational requirements.

As shown in Figure 4.7, nowadays some of the disadvantages of IIR filters are no
longer valid, if we assume to be able to perform block-wise processing (thus introducing
delay). Let us partition the input signal into blocks of length M . This length must be
much larger that the effective length L of the impulse response of the IIR filter. Each
block can be filtered with the difference equation, but the output of the block will be L
samples longer than the input block. Successive blocks of the output must then be pieced
together using overlap-and-add idea. The first L samples computed by the filter for each
block must be added to the last L samples produced by the filter for the previous block.
Other samples are used directly. Let us analyze the limitations conventionally attributed
to IIR filters:

• Stability: If we allow block-wise processing, IIR recursive filters no longer need to be
causal recursive filters. We used to be afraid of a pole outside the unit circle because
it meant instability. If we use a filter iteration that runs backward in time, then poles
that are outside the unit circle are not unstable. So we can have a stable recursive
filter with poles everywhere except exactly on the unit circle.

• Linear phase: The same idea of filtering backward in time allows to achieve linear
phase. For example, suppose that H(z) is the transfer function of any filter. We apply
that filter to the data first in one time direction and then again in the opposite time
direction. The resulting filter’s transfer function isH(z)H∗(1/z) which has real values
everywhere on the unit circle. In fact, if H(z) has any nontrivial poles inside the unit
circle, H∗(1/z) has matching poles outside the unit circle. A real frequency response
means one with zero phase. By processing one block at the time and filtering in both
directions we can achieve zero phase with recursive filters.

References

• [1] Oppenheim, A.V., Schafer, R.W. Digital Signal Processing, Prentice Hall, January
1975, ISBN 0132146355.

4.5 Selection of filter type 93

[dsp HISTORY]
On the other hand, to the best of my

knowledge, nobody so far has found an
analytic closed form design technique for
nonrecursive filter design. In 1967, there
wasn’t any way to even design optimum
FIR filters. Today they can be designed
using iterative successive approximation
techniques, such as McClellan-Parks
method [7]. In this computational age,
the usage of iterative methods is not a
serious limitation of FIR filter design.

FIR AND IIR COMPARISONS
If we had listed the general characteris-
tics and properties of recursive and non-
recursive filters in the 1970s, in the
1980s and today, the three lists would
not be the same. In the 1970s, the major
application of digital filters was frequen-
cy selective filtering. Therefore, as Table
1 shows, in the 1970s, the recursive fil-
ters offered the most advantages.

Then things began to change. Digital
filters began to be used for other pur-
poses besides frequency selectivity, like
matched filtering and adaptive filtering.
For such applications, closed form opti-
mal IIR design techniques didn’t work;
therefore, FIRs were a natural choice. In

particular, the theory and the design
techniques of adaptive filtering were
appropriate only for FIR filters. Digital
filters also began to be used in applica-
tions for which linear phase was very
important, since having linear phase
preserves the waveshape of the desired
output. Again, FIR filters were advanta-
geous. Overall, the following factors
contributed to the wider usage of non-
recursive filters: 1) new filtering appli-
cations; 2) requirements for linear
phase; 3) some optimization methods
became available for the first time.
The resulting FIRs were still less effi-
cient than IIR filters, but the difference
between their efficiency was reduced; 4)
techniques to handle very long FIR fil-
ters that resulted from given design
specifications emerged, such as
Stockham’s method of high speed con-
volution [6]; 5) the cost of memory and
multiplication operations decreased; and
6) parallel computation became practi-
cal. Both FIR and IIR filters offer some
opportunities for parallel computation,
but for IIR filters the parallelism is lim-
ited if a multiplication cannot be com-
pleted between samples.

As a result of the above evolution, by
the 1980s, the preference had tipped
decisively toward FIR filtering. But as
Table 1 also shows, some of the features
that favored FIR filters during the 1980s
have become neutral since the 1990s.
What changed for the better is that IIR
filters can now be designed to be always
stable and to have linear phase. Their
implementations also feature many
more opportunities for parallelism than
before. This means that some of the
older problems of IIR filters are now
overstated.

OVERCOMING THE PROBLEMS
OF RECURSIVE FILTERS
Many digital signal processing practi-
tioners mention the following problems
of recursive filters to justify their rare
usage nowadays: instability, nonlinear
phase, limited parallelism, and unsuit-
ability of IIRs for some applications.
However, most of these difficulties can be
overcome if we agree to run the filtering
iteration in blocks and to accept the neg-
ligible error of truncating the block. In
what follows, I will explain this idea in
more detail.

[TABLE 1] A COMPARISON OF THE NONRECURSIVE (FIR) AND RECURSIVE (IIR) FILTERS OVER THE YEARS. COLORED BOXES
INDICATE WHEN ONE TECHNIQUE OFFERS AN ADVANTAGE (IN GREY) OVER THE OTHER (IN ORANGE).

1970 1980 NOW

PROPERTY FIR IIR FIR IIR FIR IIR
TRANSFER FUNCTION ZEROS ONLY POLES AND/ ZEROS ONLY POLES AND/ ZEROS ONLY POLES AND/

OR ZEROS OR ZEROS OR ZEROS

DESIGN METHODS FOR SUB-OPTIMAL OPTIMAL OPTIMAL USING OPTIMAL OPTIMAL USING OPTIMAL
FREQUENCY SELECTIVITY USING ANALYTIC, ITERATIVE ANALYTIC, ITERATIVE ANALYTIC,

WINDOWS CLOSED FORM METHODS CLOSED FORM METHODS CLOSED FORM

MULTIPLICATIONS/REGISTERS MANY FEW MORE FEWER MORE FEWER
NEEDED FOR SELECTIVITY

CAN BE EXACTLY ALLPASS NO YES NO YES NO YES

UNSTABLE NEVER FOR POLES NEVER FOR POLES NEVER NEVER
pi, |pi| > 1 pi, |pi| > 1

DEADBAND EXISTS NO YES NO YES NO NO

CAN BE EXACTLY LINEAR YES NO YES NO YES YES
PHASE

CAN BE ADAPTIVE YES DIFFICULT OR YES DIFFICULT OR
IMPOSSIBLE IMPOSSIBLE

OPPORTUNITIES FOR MANY SOME MANY MANY
PARALLELISM

HILBERT TRANSFORMER INEFFICIENT IMPRACTICAL INEFFICIENT IMPRACTICAL INEFFICIENT EFFICIENT
BECAUSE NOT BECAUSE NOT
CAUSAL CAUSAL

IEEE SIGNAL PROCESSING MAGAZINE [48] NOVEMBER 2006
Fig. 4.7. A comparison of the nonrecursive (FIR) and recursive (FIR) filters over the years.
Colored boxes indicate when one technique offers an advantage (in gray) over the other (in
orange) [3].

• [2] Mitra, A.K., Digital Signal Processing - A computer based approach, McGraw-
Hill, Third edition, January 2005, ISBN 0073048372

• [3] Rader, C.M., The Rise and Fall of Recursive Digital Filters, Signal Processing
Magazine, IEEE Volume 23, Issue 6, Nov. 2006, Page(s):46 - 49

5

Introduction to multirate processing

Multirate processing techniques are used in several application scenarios:

• subband coding of speech and image

• beamforming (steered microphone arrays)

• spectrum estimation

5.1 Downsampling

The operation of downsampling by factor M describes the process of keeping every M th

sample and discarding the rest. This is denoted by ↓M in block diagrams, as in Figure
5.1.

Mx(m) y(n)

Fig. 5.1. Downsampling by a factor M

Formally, downsampling can be written as y(n) = x(nM) in the z domain:

Y (z) =
+∞∑

n=−∞
y(n)z−n =

+∞∑
n=−∞

x(nM)z−n =

=
+∞∑

m=−∞
x(m)

[
1
M

M−1∑
p=0

ej2πpm/M

]
z−m/M (5.1)

96 5 Introduction to multirate processing

where:
1
M

M−1∑
p=0

ej2πpm/M =

{
1 if m is multiple of M
0 otherwise

(5.2)

Y (z) =
1
M

M−1∑
p=0

+∞∑
m=−∞

x(m)
[
e−j2πp/Mz

1
M

]−m

=

=
1
M

M−1∑
p=0

X(e−j2πp/Mz
1

M) (5.3)

Translating to the frequency domain (assuming T = 1):

Y (ejω) =
1
M

M−1∑
p=0

X(ej ω−2πp
M) (5.4)

As shown in Figure 5.2, downsampling expands each 2π-periodic repetition of X(ejω)
by a factor of M along the ω axis, and reduces the gain by a factor of M . If x(m) is not
bandlimited to π/M , aliasing may result from spectral overlap.

Fig. 5.2. Downsampling by a factor M

Listing 5.1. Matlab

N = 41; %try a low value o f N to see a l i a s i n g
x = ba r t l e t t (N) ;
x down = x (1 : 2 : end) ;

[H, w] = f r eq z (x , 1 , 1024) ;
[H down , w] = f r eq z (x down , 1 , 1024) ;

p lo t (w, 10∗ log10 (abs (H) . ˆ 2)) ;
hold on
p lo t (w, 10∗ log10 (abs (H down) . ˆ 2) , ’ r - - ’) ;
hold o f f

5.2 Upsampling 97

5.2 Upsampling

The operation of upsampling by factor L describes the insertion of L− 1 zeros between
every sample of the input signal. This is denoted by L in block diagrams, as in Figure
5.3.

Lx(m) y(n)

Fig. 5.3. Upsampling by a factor L

Formally, upsampling can be expressed in the z domain as:

Y (z) =
+∞∑

n=−∞
y(n)z−n =

+∞∑
n=−∞

x(
n

L
)z−n =

+∞∑
k=−∞

x(k)(zL)−k = X(zL) (5.5)

In the frequency domain:
Y (ejω) = X(ejωL) (5.6)

As shown in Figure 5.4, upsampling compresses the DTFT by a factor of L along with
the ω axis.

Fig. 5.4. Upsampling by a factor L

Listing 5.2. Matlab

N = 21;
x = ba r t l e t t (N) ;
x up = zero s (2∗N, 1) ;
x up (1 : 2 : end) = x ;

[H, w] = f r eq z (x , 1 , 1024) ;
[H up , w] = f r eq z (x up , 1 , 1024) ;

98 5 Introduction to multirate processing

p lo t (w, 10∗ log10 (abs (H) . ˆ 2)) ;
hold on
p lo t (w, 10∗ log10 (abs (H up) . ˆ 2) , ’ r - - ’) ;
hold o f f

5.3 Decimation

Decimation is the process of filtering and downsampling a signal to decrease its effective
sampling rate, as illustrated in Figure 5.5. The filtering is employed to prevent aliasing
that might otherwise result from downsampling.

Mx(m) y(n)LPF π/M

DC gain 1
v(m)

Fig. 5.5. Decimation by a factor M

To be more specific, say that:

xc(t) = xl(t) + xb(t) (5.7)

where xl(t) is a lowpass component bandlimited to 1
2MT Hz and xb(t) is a bandpass

component with energy between 1
2MT and 1

2T Hz. If sampling xc(t) with interval T yields
an unaliased discrete representation x(m), then decimating x(m) by a factor of M will
yield y(n), an unaliased MT -sampled representation of lowpass component xl(t).

We offer the following justification of the previously described decimation procedure.
From the sampling theorem, we have:

X(ejω) =
1
T

+∞∑
k=−∞

Xl(ej ω−2πk
T) +

1
T

+∞∑
k=−∞

Xb(ej ω−2πk
T) (5.8)

The bandpass component Xb(·) is then removed by π/M -lowpass filtering, giving

V (ejω) =
1
T

+∞∑
k=−∞

Xl(ej ω−2πk
T) (5.9)

Finally, downsampling yields:

5.3 Decimation 99

Y (ej2πf) =
1

MT

M−1∑
p=0

+∞∑
k=−∞

Xl(ej
ω−2πp

M
−2πk

T)

=
1

MT

M−1∑
p=0

+∞∑
k=−∞

Xl(ej
ω−2π(kM+p)

MT) =
1

MT

+∞∑
l=−∞

Xl(ej ω−2πl
MT) (5.10)

which is a MT -sampled version of xl(t). A frequency domain illustration for M = 2
appears in Figure 5.6.

Fig. 5.6. Decimation by a factor 2. (there is an error in the left figure, as the spectrum needs
to be symmetric with respect to −π and +π

Listing 5.3. Matlab

M = 4;
b = f i r 1 (30 ,1/M) ;

f i g u r e (1)
f r e q z (b , 1)

N = 41 ;
x = [ze ro s (50 , 1) ; b a r t l e t t (N) ; z e ro s (5 0 , 1)] ;
x f i l t = conv (b , x) ;
x dec = x f i l t (1 :M: end) ;

[H, w] = f r eq z (x , 1 , 1024) ;
[H f i l t , w] = f r eq z (x f i l t , 1 , 1024) ;
[H dec , w] = f r eq z (x dec , 1 , 1024) ;

f i g u r e (2)
p lo t (w, 10∗ log10 (abs (H) . ˆ 2)) ;
hold on
p lo t (w, 10∗ log10 (abs (H f i l t) . ˆ 2) , ’ b - . ’) ;
p l o t (w, 10∗ log10 (abs (H dec) . ˆ 2) , ’ r - - ’) ;
hold o f f

f i g u r e (3)
subplot (3 , 1 , 1) , p l o t (x)
subplot (3 , 1 , 2) , p l o t (x f i l t)
subplot (3 , 1 , 3) , p l o t (x dec)

% see a l s o
% decimate (x , M, N, ’FIR ’) %FIR window method
% or
% decimate (x , M) %chebychev IIR f i l t e r

100 5 Introduction to multirate processing

5.4 Interpolation

Interpolation is the process of upsampling and filtering a signal to increase its effective
sampling rate. To be more specific, say that x(m) is an (unaliased) T -sampled version
of xc(t) and v(n) is an L-upsampled version version of x(m). If we filter v(n) with an
ideal π/L-bandwidth lowpass filter (with DC gain L) to obtain y(n), then y(n) will be
a T/L-sampled version of xc(t). This process is illustrated in Figure 5.7.

Lx(m) y(n)LPF π/L

DC gain L
v(n)

Fig. 5.7. Interpolation by a factor L

We justify our claims about interpolation using frequency-domain arguments. From
the sampling theorem, we know that T -sampling xc(t) to create x(n) yields:

X(ejω) =
1
T

+∞∑
k=−∞

Xc

(
ej ω−2πk

T

)
(5.11)

After upsampling by a factor L, we obtain:

V (ejω) =
1
T

+∞∑
k=−∞

Xc

(
ej ωL−2πk

T

)
=

1
T

+∞∑
k=−∞

Xc

(
e
j

ω− 2πk
L

T
L

)
(5.12)

Lowpass filtering with cutoff π/L and gain L yields:

Y (ejω) =
L

T

+∞∑
l=−∞

Xc

(
e
j ω−2πl

T
L

)
(5.13)

This process yields a T/L-sampled version of xc(t). Figure 5.8 illustrates these frequency-
domain arguments for L = 2.

Listing 5.4. Matlab

M = 8; N = 30;
b = f i r 1 (N,1/M, ka i s e r (N+1, 5)) ; % s in c i n t e r p o l a t o r (approx)
%b = (1/M)∗ ones (M, 1) ; % hold
%b = (1/M)∗ ba r t l e t t (2∗M+1); % l i n e a r i n t e r p o l a t i o n

f i g u r e (1)
f r e q z (b , 1)

N = 41 ;

5.5 Multirate identities 101

Fig. 5.8. Interpolation by a factor 2

x = [ze ro s (50 , 1) ; hanning (N) ; z e ro s (5 0 , 1)] ;

x up = zero s (M∗ l ength (x) , 1) ; x up (1 :M: end) = x ;

x i n t = f i l t e r (M∗b , 1 , x up) ;

[H, w] = f r eq z (x , 1 , 1024) ;
[H up , w] = f r eq z (x up , 1 , 1024) ;
[H int , w] = f r eq z (x int , 1 , 1024) ;

f i g u r e (2)
p lo t (w, 10∗ log10 (abs (H) . ˆ 2)) ;
hold on
p lo t (w, 10∗ log10 (abs (H up) . ˆ 2) , ’ b - . ’) ;
p l o t (w, 10∗ log10 (abs (H int) . ˆ 2) , ’ r ’) ;
hold o f f

f i g u r e (3)
subplot (3 , 1 , 1) , p l o t (x)
subplot (3 , 1 , 2) , p l o t (x up)
subplot (3 , 1 , 3) , p l o t (x i n t)

% see a l s o
% in t e rp (x , M) ;

5.5 Multirate identities

Interchange of upsampling and filtering

x
MH(z)

y x
M H(zM)

yx1 x2

Fig. 5.9. Interchange of upsampling and filtering

Proof:

Y (z) = X1(zM) = H(zM)X(zM). Since X2(z) = X(zM), filter with H(zM) to get
Y (z).

102 5 Introduction to multirate processing

x
MH(zM)

y x
M H(z)

yx1 x2

Fig. 5.10. Interchange of downsampling and filtering

Interchange of downsampling and filtering

Proof:

X1(z) = H(zM)X(z) (5.14)

Y (z) =
1
M

M−1∑
k=0

H((ej2πk/Mz1/M)MX(ej2πk/Mz1/M)

=
1
M

M−1∑
k=0

H(z)X(ej2πk/Mz1/M)

= H(z)
1
M

M−1∑
k=0

X(ej2πk/Mz1/M)

= H(z)X2(z) (5.15)

5.6 Polyphase filters

Polyphase decimation

Consider the block diagram in Figure 5.11. where h(n) is a generic lowpass FIR filter of
length L.

Mx(n) y(n)h(n)

Fig. 5.11. Block diagram of a decimation system. Decimation factor M

The direct implementation structure of such FIR filter is show in Figure 5.12

This structure is described by the following equation

5.6 Polyphase filters 103

Mx(n) y(m)

z-1

h(0)

h(1)

z-1

z-1

h(L-2)

h(L-1)

...

Fig. 5.12. Expanded structure of a decimation system.

y(m) = x(n) ∗ h(n)|n=Mm =
L−1∑
l=0

h(l)x(n− l) |n=Mm (5.16)

The computational efficiency of this solution is not satisfactory. In fact, the result
of several operations is discarded when the output of filtering is decimated. For this
reason it is more convenient to swap the order of the two blocks. This way we reduce
the computational burden since everything that follows the decimator module works at
a rate M times slower than before. This result is shown in Figure 5.13

At this point we can further elaborate this structure. Setting N = 9 and M = 3 we
have the system depicted in Figure 5.14.

Merging together the outputs of the decimators in groups of size M = 3 we get the
structure shown in Figure 5.15.

In the general case, consider a filter h(n) of length L = KM , with K and M integers.
We can write

H(z) =
L−1∑
l=0

h(l)z−l =
K−1∑
k=0

M−1∑
m=0

h(kM +m)z−(kM+m) =

=
M−1∑
m=0

z−m
K−1∑
k=0

h(kM +m)(zM)−k =
M−1∑
m=0

z−mEm(zM) (5.17)

where we indicate

104 5 Introduction to multirate processing

x(n) y(m)

z-1

h(0)

h(1)

z-1

z-1

h(L-2)

h(L-1)

...

M

M

M

M

+

+

+
+

+
+

Fig. 5.13. Expanded structure of a decimation system. The decimation module is interleaved
with filtering.

x(n) y(m)

z-1

h(1)

z-1

z-1

h(7)

h(8)

...

3

3

3

3

h(0)

{x(n), x(n+3), x(n+6), ...}

{x(n-1), x(n+2), x(n+5), ...}

{x(n-7), x(n-4), x(n-1), ...}

{x(n-8), x(n-5), x(n-2), ...}

+

+

+

+

+

+

Fig. 5.14. Example of implementation structure of a FIR filter with N = 9 samples and
decimation factor M = 3.

Em(z) =
K−1∑
k=0

em(k)z−k em(k) = h(kM +m) (5.18)

Note that the argument of Em is zM instead of z. This means that Em works at
a rate M times slower than the original filter. The impulse responses of the polyphase
filters em are obtained by downsampling by a factor M the original impulse response
h(n) delayed by m samples.

5.6 Polyphase filters 105

x(n) y(m)

z-1

3

h(0)

z-1

z-1

+

+
+

+

3
h(1)

z-1

z-1

+

+
+

+

z-1

3

h(2)

z-1

z-1

+

+
+

+

+
+

+
+

h(3)

h(6)

h(4)

h(7)

h(5)

h(8)

E0

E1

E2

Fig. 5.15. Example of implementation structure of a FIR filter with N = 9 samples and
decimation factor M = 3.

Figure 5.16 shows how to compute decimation by means of polyphase filters. First,
the filter H(z) in (a) is expanded in its polyphase representation in (b), according to
equation (5.17). Then, for each sub-filter Em(zM), multirate identity in Figure 5.10 are
used to invert the order of filtering and downsampling (c).

x(n)
MH(z)

y(m)

a) b) c)

x(n) y(m)

z-1

z-1

+
+

+
+

E0(zM)

E1(zM)

EM-1(zM)

+

+

...

x(n) y(m)

z-1

M

M

z-1

M

+
+

+
+

E0(z)

E1(z)

EM-1(z)

+
M +EM-2(z)

...

EM-2(zM)

M

Fig. 5.16. Polyphase implementation of a decimation system

106 5 Introduction to multirate processing

The input stage of the polyphase structure in Figure 5.16c can be interpreted as a
sort of multiplexing that distributes samples to the M polyphase filters according to a
round-robin policy (Figure 5.17).

x(n)

...

x(n),x(n+M),...

x(n-1),x(n-1+M),...

x(n-2),x(n-2+M),...

x(n-M+1),x(n+1),...

Fig. 5.17. Multiplexing operated by the input stage of a polyphase implementation of a deci-
mation system (decimation factor M).

A decimation filter implemented without recurring to the polyphase structure re-
quires N memory cells. By using the polyphase structure the number of cells is reduced
to M + N

M .

Listing 5.5. Matlab

% Create input s i g n a l and f i l t e r
x=1:21;
h=[1 2 3 4 5 6 7 8 9 10 0 0] ; % Pad ze ro s to make length equal to i n t e g e r mul t ip l e o f M

% %%%%%% Direct Form (I n e f f i c i e n t) %%%%%%
y=f i l t e r (h , 1 , x) ; % Compute f i l t e r output
y dec=y (1 : 4 : end) % Throw away unneeded output samples

% %%%%%% Polyphase Form (E f f i c i e n t) %%%%%%
% Se l e c t polyphase f i l t e r s
p0=h (1 : 4 : end)
p1=h (2 : 4 : end)
p2=h (3 : 4 : end)
p3=h (4 : 4 : end)

% Se l e c t polyphase s i g n a l s
% Put a zero in f r on t to provide the x [−3] , x [−2] , and x [−1] terms
x0=x (1 : 4 : end)
x1=[0 x (4 : 4 : end)]
x2=[0 x (3 : 4 : end)]
x3=[0 x (2 : 4 : end)]
% f i l t e r each polyphase component and add together
y po ly dec=f i l t e r (p0 , 1 , x0)+ f i l t e r (p1 , 1 , x1)+ f i l t e r (p2 , 1 , x2)+ f i l t e r (p3 , 1 , x3)

Polyphase interpolation

The same arguments apply in the case of interpolation. Figure 5.18 shows how the
conventional interpolation scheme in (a) is converted in the polyphase implementation
in (c) using equation (5.17) and the multirate identity in Figure 5.9.

5.7 Polyphase filter banks 107

x(n) y(m)
M

M

M

+
+

+
+

E0(z)

E1(z)

EM-1(z)

+
M +EM-2(z)

...

z-1

z-1

z-1

x(n) y(m)
M +

+

+
+

E0(zM)

E1(zM)

EM-1(zM)

+

+EM-2(zM)

...

z-1

z-1

z-1

x(n)
M H(z)

y(m)

a) b) c)

Fig. 5.18. Polyphase implementation of a interpolation system (interpolation factor M).

5.7 Polyphase filter banks

A filter bank is a set of parallel filters that enables to decompose the input signal into
a number of subbands. Figure 5.19 show an example where the number of M = 4
subbands.

ωπ
2
π

2
3π π20

)(0 ωH)(1 ωH)(2 ωH)(3 ωH)(0 ωH

Fig. 5.19. Frequency response of a uniform filter bank with M = 4 subbands

Each of the Hm(z) filters can be seen as obtained by translating the frequency
response of H0(z) by 2π m

M :
Hm(z) = H0(ze+j 2πm

M) (5.19)

We can write H0(z) as in (5.17),

H0(z) =
M−1∑
k=0

z−kEk(zM) (5.20)

Therefore, the expression of Hm(z) becomes

Hm(z) = H0(ze+j 2πm
M) =

M−1∑
k=0

z−ke−j 2πm
M kEk(zMe+j 2πm

M M) (5.21)

108 5 Introduction to multirate processing

Since e+j 2πm
M M = 1, we get:

Hm(z) =
M−1∑
k=0

z−ke−j 2πm
M kEk(zM) (5.22)

By setting W = e−
2π
M we can further simplify the expression that becomes

Hm(z) =
M−1∑
k=0

z−kWmkEk(zM) (5.23)

By grouping together the expressions of Hm(z) for m = 0, . . . ,M − 1 in matrix form we
obtain:

H0(z)
H1(z)
H2(z)
· · ·

HM−1(z)

 =

W 0 W 0 W 0 · · · W 0

W 0 W 1 W 2 · · · WM−1

W 0 W 2 W 4 · · · W 2(M−1)

· · · · · · · · · · · · · · ·
W 0 WM−1 W 2(M−1) · · · W (M−1)2

E0(zM)

z−1E1(zM)
z−2E2(zM)
· · ·

z−(M−1)EM−1(zM)

 (5.24)

The M×M matrix is the one that implements the DFT. Therefore, the implementation
of the filter bank is shown in Figure 5.20.

x(n)

z-1

z-1

E0(zM)

E1(zM)

EM-1(zM)

...

EM-2(zM)

DFT ...

band 0

band 1

band M-1

band M-2

Fig. 5.20. Implementation of a polyphase filterbank with the DFT

This structure is computationally efficient because

• the input stage takes advantage of the polyphase filter structure

5.8 Perfect reconstruction filter banks 109

• the DFT is implemented using the FFT, thus reducing the complexity from O(M2)
to O(M logM).

Listing 5.6. Matlab

x = randn (1000 ,1) + j ∗randn (1000 , 1) ; % input s i g n a l
out = ze ro s (M, length (x)) ; % output subbands

M = 4; % number o f subbands
K = 10;
L = M∗K; % f i l t e r taps

h = f i r 1 (L−1, 1/M) ; %des ign f i l t e r with window method

h m = zero s (M, length (h)) ;

% compute polyphase f i l t e r s
f o r m = 1 :M

h m(m,m:M: end) = h(m:M: end) ;
end

% compute f i l t e r b ank output
f o r m = 1 :M

y = f i l t e r (h m(m, :) , 1 , x) ;
out (m, 1 : l ength (y)) = y ;

end
out = f f t (out) ;

% show output spectrum
fo r m = 1 :M

subplot (M,1 ,m)
Hs=spectrum . welch ;
psd (Hs , out (m, :))

end

5.8 Perfect reconstruction filter banks

By combining the functional modules described in the previous sections it is possible to
obtain a system that has enormous importance in audio, image and video processing:
subband coding.

Although it is possible to generalize this scheme to an arbitrary number of M sub-
bands, here we focus our attention on the system depicted in Figure 5.21 where M = 2.

The input signal is decomposed into two subbands in the analysis phase.

• the low-pass subband y0(m) is a low-pass filtered (h0(n)) and downsampled version
of the input

• the high-pass subband y1(m) is a high-pass filtered and downsampled version of the
input

110 5 Introduction to multirate processing

2

x(n)

y0(m)
h0(n) 2 g0(n)

2h1(n) 2 g1(n)
y1(m)

analysis synthesis y(n)

Fig. 5.21. Bank of two filters

The signal is reconstructed from the resulting subbands in the synthesis phase by
upsampling and appropriate filtering (low-pass filter g0(n) and high-pass filter g1(n)).

The goal of subband coding is to design the filters h0(n), h1(n), g0(n) and g1(n) in
such a way that y(n) = x(n), i.e. perfect reconstruction is achieved.

Before proceeding, we rewrite the z domain expression for downsampling and up-
sampling when M = L = 2:

• downsampling

xdown(n) = x(2n)⇐⇒ Xdown(z) =
1
2
[X(z1/2) +X(−z1/2)] (5.25)

• upsampling

xup(n) =

{
x(n/2) n = 0, 2, 4, . . .
0 otherwise

⇐⇒ Xup(z) = X(z2) (5.26)

If we consider the system in Figure 5.22 that depicts a cascade of downsampling and
upsampling by a factor of 2 we can combine the previous expressions to obtain:

V (z) =
1
2
[X(z) +X(−z)] (5.27)

The X(−z) term in this equation is the Z-transform of an aliased or modulated
version of the sequence x(n):

X(−z) =
∑

x(n)(−z)−n =
∑

x(n)(−1)nz−n ←→ (−1)nx(n) (5.28)

In the frequency domain, this is equivalent to shifting the frequency axis by ω = π.

5.8 Perfect reconstruction filter banks 111

2x(n) 2 v(n)

Fig. 5.22. Downsampling followed by upsampling M = L = 2

According to equation (5.27) we can write the output y(n) of the analysis-synthesis
system in the z domain as

Y (z) =
1
2
G0(z)[H0(z)X(z) +H0(−z)X(−z)] +

1
2
G1(z)[H1(z)X(z) +H1(−z)X(−z)]

(5.29)
The previous expression can be rewritten as:

Y (z) =
1
2
[H0(z)G0(z) +H1(z)G1(z)]X(z) +

1
2
[H0(−z)G0(z) +H1(−z)G1(z)]X(−z)

(5.30)

In order to obtain Y (z) = X(z) the following constraints must be satisfied:

T (z) = H0(z)G0(z) +H1(z)G1(z) = 2 (5.31)

A(z) = H0(−z)G0(z) +H1(−z)G1(z) = 0 (5.32)

The first equation imposes perfect reconstruction, while the second enables to cancel
alias. Note that alias cancelation can be achieved also with non-ideal filters.

The solution to this problem is not unique. In the following we define how to obtain
one specific solution: QMF (Quadrature Mirror Filters).

Since A(z) = 0, we can write:

G0(z)
G1(z)

= −H1(−z)
H0(−z)

(5.33)

Therefore:
G0(z) = C(z)H1(−z) (5.34)

G1(z) = −C(z)H0(−z) (5.35)

The simplest choice for C(z) is C(z) = 1, thus:

G0(z) = H1(−z)←→ g0(n) = (−1)nh1(n) (5.36)

G1(z) = −H0(−z)←→ g1(n) = (−1)n+1h0(n) (5.37)

112 5 Introduction to multirate processing

So far, we have expressed the synthesis filters impulse responses as a function of the
analysis filters impulse responses.

Then, we exploit the constraint T (z) = 2. We can slightly relax this constraint by
writing T (z) = dzl, i.e. the output is a scaled and delayed copy of the input.

Let us impose that all the filters have finite impulse response (FIR) and linear phase,
i.e. h(n) = h(N − 1− n).

Having fixed H0(z), let us set H1(z) in such a way that the modulus of its frequency
response is a mirrored copy of the modulus of H0(z) with respect to ω = π/2. This is
equivalent to modulating the frequency response at ω = π

H1(ejω) = H0(ej(ω−π)) (5.38)

In the z domain this is equivalent to:

H1(z) = H0(−z) (5.39)

G0(z) = H1(−z) = H0(z) (5.40)

G1(z) = −H0(−z) = −H1(z) (5.41)

If we plug these terms into equation (5.31) we obtain:

T (z) =
1
2
[H2

0 (z)−H2
1 (z)] (5.42)

Since H0(z) has linear phase:

H0(ejω) = e−jω(N−1)/2 · |H0(ejω)| (5.43)

and

H1(ejω) = H0(ej(ω−π)) =

= e−j(ω−π)(N−1)/2 · |H0(ej(ω−π))| =

= e−jω(N−1)/2 · e−jπ(N−1)/2|H0(ej(ω−π))| =

= e−jω(N−1)/2 · (−1)
N−1

2 |H0(ej(ω−π))| (5.44)

therefore:
T (ejω) =

1
2
e−jω(N−1)[|H0(ejω)|2 − (−1)N−1|H0(ej(ω−π))|2] (5.45)

If N is odd, T (z) = 0. We want N to be even. In this case we obtain:

T (ejω) =
1
2
e−jω(N−1)[|H0(ejω)|2 + |H0(ej(ω−π))|2] (5.46)

5.8 Perfect reconstruction filter banks 113

which implies:

|H0(ejω)|2 + |H0(ej(ω−π))|2 = |H0(ejω)|2 + |H1(ejω)|2 = const (5.47)

To summarize, the QMF conditions are:

• linear phase FIR filters (N even)

• H1(ejω) = H0(ej(ω−π))

• |H0(ejω)|2 + |H0(ej(ω−π))|2 = const

Listing 5.7. Matlab

% generate f i l t e r s based on QMF cond i t i on s
h0 = [sq r t (2)/2 , sq r t (2) / 2] ;

h1 = h0 .∗ [1 −1]; g0 = h0 ; g1 = −h1 ;

% check QMF cond i t i on s in the frequency domain
[H0 , W] = f r eq z (h0 , 1 , 1000) ; [H1 , W] = f r eq z (h1 , 1 , 1000) ;

T = abs (H0) . ˆ2 + abs (H1) . ˆ 2 ;

f i g u r e (1)
p lo t (W, abs (H0) . ˆ 2)
hold on
p lo t (W, abs (H1) . ˆ 2 , ’ r ’)
p lo t (W, T, ’ g ’) ;
ax i s ([0 p i 0 2 . 2]) , x l abe l (’ \ o m e g a ’) ; y l abe l (’ | H _ i (\ o m e g a) | ^ 2 ’)
legend (’ | H _ 0 (\ o m e g a) | ^ 2 ’ , ’ | H _ 1 (\ o m e g a) | ^ 2 ’ , ’ T (\ o m e g a) ’) ;
hold o f f

[x Fs Nbits] = wavread (’ . . / f i l e s o u r c e s / t r u m p e t . w a v ’) ; x = x (: , 1) ;

% ana l y s i s
% low pass subband
y0 = conv (x , h0) ; % f i l t e r i n g
y0 = y0 (1 : 2 : end) ; % downsampling

% high pass subband
y1 = conv (x , h1) ; % f i l t e r i n g
y1 = y1 (1 : 2 : end) ; % downsampling

%syn the s i s
% low pass subband
y0 up = upsample (y0 , 2) ; y0 up = conv (y0 up , g0) ;

% high pass subband
y1 up = upsample (y1 , 2) ; y1 up = conv (y1 up , g1) ;

y = y0 up + y1 up ;

y = y (2 : end−2);

e = x − y ; d i sp l ay ([’ m a x e r r o r : ’ num2str (max(abs (e)))]) ;

References

• Mitra, S, Digital Signal Processing, McGraw-Hill, 3rd edition, January 2005, ISBN
0073048372

Part II

Fundamentals of statistical signal processing

6

Introduction to discrete random processes

6.1 Random sequences

A discrete time random sequence - DTRS - (also called random process, stochastic
process) is a sequence of random variables x(n), where for a given n, x(n) is a random
variable described by a probability distribution function Fx(n)(x, n) that, in general,
depends on the data sequence number n and it is given by

Fx(n)(x, n) = Pr{x(n) ≤ x} (6.1)

where Pr means the probability that the event in braces occurs and x is a real number.

The random variable can assume

• a continuous range of values

• a discrete set of values

If the partial derivative of Fx(n)(x, n) with respect to x exists for all x, we can define
the probability density function (pdf)

fx(n)(x, n) =
∂

∂x
Fx(n)(x, n) (6.2)

On the other hand is x(n) assumes only a countable set of values, it is described by
a discrete pdf (also called pmf)

fx(n)(x, n) =
+∞∑

k=−∞

px(n)(xk, n)δ(x− xk) (6.3)

118 6 Introduction to discrete random processes

Expectations

Let g(x) be a function of a random variable x. The expected value of g(x) is

E[g(x)] =
∫ +∞

−∞
g(x)fx(x)dx (6.4)

E[g(x)] is also called the average value or the mean value of g(x).

If g(x) = x

ηx = E[x] =
∫ +∞

−∞
xfx(x)dx (6.5)

The variance of x is defined as:

σ2
x = E[(x− ηx)2] (6.6)

Statistical independence and uncorrelation

Two random variables x and y are statistically independent if their joint pdfs factor into
the product of the marginal pdfs

fxy(x, y) = fx(x)fy(y) (6.7)

They are uncorrelated if
E[xy] = E[x]E[y] (6.8)

If x and y are independent they are uncorrelated. The converse is not in general true (it
is true if they are jointly Gaussian).

Independent identically distributed (i.i.d.) random sequences

Consider the case when the p.d.f. does not depend on the time index n

fx(n)(x, n) = fx(x) (6.9)

If, in addition, the random variables at different time instant n,m are independent the
sequence {x(n)} is said to be an independent identically distributed random sequence.

In other words, a i.i.d. sequence is characterized by a p.d.f. (or p.m.f) fx(x). The
sequence is generated by taking independent samples of the p.d.f.

6.2 Jointly distributed random sequences 119

Bernoulli sequence

Consider the experiment of tossing a coin. The p.m.f. that describes the experiment is
the Bernoulli p.m.f.

fx(x) =

{
0 with probability p
1 with probability 1− p

(6.10)

By repeatedly tossing a coin we generate a Bernoulli i.i.d. sequence.

Listing 6.1. Matlab

% generate i . i . d . Be rnou l l i sequence o f 1000 samples , p = 0.5
x = round (rand (1000 , 1)) ;

% generate i . i . d . Be rnou l l i sequence o f 1000 samples , a rb i t r a r y p
y = rand (1000 , 1) ;
x = ze ro s (l ength (y) , 1) ;
p = 0 . 2 ;
x (y < p) = 0 ;
x (y >= p) = 1 ;

Gaussian i.i.d.

We obtain a Gaussian i.i.d. sequence by sampling a Gaussian p.d.f. with mean ηx and
variance σ2

x.

fx(x) =
1√

2πσ2
x

e
− (x−ηx)2

2σ2
x (6.11)

Listing 6.2. Matlab

% generate i . i . d . Gaussian sequence o f 1000 samples , zero mean , var iance = 1
x = randn (1000 , 1) ;

% generate i . i . d . Gaussian sequence o f 1000 samples , mean = m, var iance = v
m = 1;
v = 2 ;
x = sqr t (v)∗ randn (1000 ,1) + m;

6.2 Jointly distributed random sequences

Two discrete-time sequences x(n) and y(m) are described by a joint probability function
Fx(n),y(m)(x, n, y,m)

Fx(n),y(m)(x, n, y,m) = Pr{x(n) ≤ x and y(m) ≤ y} (6.12)

If x(n) and y(m) assume a continuous range of values and Fx(n),y(m)(x, n, y,m) is dif-
ferentiable with respect to x and y the joint probability density function is defined as

fx(n),y(m)(x, n, y,m) =
∂2

∂x∂y
Fx(n),y(m)(x, n, y,m) (6.13)

120 6 Introduction to discrete random processes

Example

Let {x(n)} and {z(n)} two Gaussian i.i.d. sequences having zero mean and variances σ2
x

and σ2
n. Consider the random sequence {y(n)}, defined as

y(n) = x(n) + z(n) (6.14)

Sequences {x(n)} and {y(n)} are statistically dependent. Therefore, the knowledge of
fx(n)(x, n) and fy(n)(y, n) is not enough to describe the joint p.d.f. fx(n),y(m)(x, n, y,m).
Since we are dealing with i.i.d. sequences we can drop the time index, i.e. fx(n),y(m)(x, n, y,m) =
fx,y(x, y) 6= fx(x)fy(y). Listing 6.3 shows how to generate and visualize samples of the
joint p.d.f. fx,y(x, y).

Listing 6.3. Matlab

var x = 1 ; var z = 0 . 1 ;

x = sqr t (var x)∗ randn (1000 , 1) ;
z = sqr t (var z)∗ randn (1000 , 1) ;

y = x + n ;

p lo t (x , y , ’ o ’) ;

Stationary discrete time random sequences

A DTRS is stationary if its statistical characterization is not affected by a shift in the
data sequence origin, i.e.

Fx(n)(x, n) = Fx(n+k)(x, n+ k) = Fx(x) ∀k, n (6.15)

Correlation and covariance sequences

Given two DTRS x(n) and y(n) the cross-correlation is defined as

rxy(i, j) = E[x(n− i)y∗(n− j)] (6.16)

The auto-correlation function is defined as

rx(i, j) = E[x(n− i)x∗(n− j)] (6.17)

In the following we restrict our attention on wide-sense stationary (WSS) sequences:

6.2 Jointly distributed random sequences 121

• the mean value is independent of the data sequence index

E[x(n)] = η(n) = η ∀n (6.18)

• the correlation is function only of the difference in the time indices of the two random
variables

rxy(m) = E[x(n)y∗(n−m)] = E[x(n+m)y∗(n)] (6.19)

rx(m) = E[x(n)x∗(n−m)] = E[x(n+m)x∗(n)] (6.20)

The autocovariance and the cross-covariance sequences of WSS DTRSs are defined re-
spectively by,

cx = E{[x(n)− ηx][x(n−m)− ηx]∗} = rx(m)− |ηx|2 (6.21)

cxy = E{[x(n)− ηx][y(n−m)− ηy]∗} = rxy(m)− ηxη
∗
y (6.22)

Example

Consider a zero-mean i.i.d. sequence {z(n)} and the sequence {x(n)} generated by the
following first-order difference equation

x(n) = ρx(n− 1) + z(n) (6.23)

with |ρ| < 1. It is possible to show that the sequence {x(n)} is WSS with:

ηx = 0 (6.24)

σ2
x = E[x(n)2] = E[(ρx(n− 1) + z(n))2] =

= ρ2E[x(n− 1)2] + 2ρE[x(n− 1)z(n)] + E[z(n)2] =

= ρ2σ2
x + σ2

z =⇒ σ2
x =

σ2
z

1− ρ2
(6.25)

rx(m) = σ2
xρ

−|m| (6.26)

Listing 6.4. Matlab

rho = 0 . 9 9 ;
var z = 0 . 1 ;

z = sqr t (var z)∗ randn (1000 , 1) ;
x = f i l t e r (1 , [1 −rho] , z) ;

p l o t (x) ;

122 6 Introduction to discrete random processes

Time averages and ergodicity

Time averages are often used to infer statistical properties for DTRSs. Let x(x) be a
WSS DTRS. Then the (2N +1)-point time average for the x(n) provides an estimate of
the mean

< x(n) >N=
1

2N + 1

N∑
n=−N

x(n) (6.27)

If the estimate converges for N −→∞ we define

< x(n) >= lim
N−→∞

< x(n) >N (6.28)

as the average of the entire sequence.

By comparison, E[x(n)] is an ensemble average, i.e. it is the mean of all possible
values of x(n) at a specific value of n.

Similarly, an estimate of the autocorrelation sequence is

< x(n)x∗(n−m) >N=
1

2N + 1

N∑
n=−N

x(n)x∗(n−m) (6.29)

and if the estimate converges

< x(n)x∗(n−m) >= lim
N−→∞

< x(n)x∗(n−m) >N (6.30)

If x(n) is not only WSS but also satisfies the ergodic theorems for the mean and the
autocorrelation, then

< x(n) >= E[x(n)] (6.31)

< x(n)x∗(n−m) >= rx(m) (6.32)

Therefore, if the sequence is ergodic, time averages are equivalent to ensemble aver-
ages.

Example

Listing 6.5 shows R = 1000 realizations of N samples each of the random process defined
above. Note that both time statistics and ensemble statistics converge to the same (true)
value as R and N tend to ∞.

6.2 Jointly distributed random sequences 123

Listing 6.5. Matlab

rho = 0 . 9 ; var z = 0 . 1 ;

N = 2000; % number o f time samples
R = 2000; % number o f r e a l i z a t i o n s

x = ze ro s (R,N) ; z = sqr t (var z)∗ randn (R,N) ;

f o r r = 1 :R
x(r , :) = f i l t e r (1 , [1 −rho] , z (r , :)) ;

end

% time s t a t i s t i c s (N) (assume only f i r s t r e a l i z a t i o n ava i l a b l e)
% ensemble s t a t i s t i c s (R) (compute only at time 50 because WSS)

m N = mean(x (1 , :))
m R = mean(x (: , 5 0))
m T = 0

v N = var (x (1 , :))
v R = var (x (: , 5 0))
v T = var z / (1 − rho ˆ2)

Stationary vs ergodic

Let a be a random number which is - say - normally distributed (the distribution is not
critical). Define a trivial DTRS

x(n) = a (6.33)

(where braces {} imply the ensemble of all possible outcomes).

One realization (outcome) of this process will simply be the constant horizontal time
path

x1(n) = a1 (6.34)

another outcome will be
x2(n) = a2 (6.35)

different from the first.

Repeating this experiment many times will give a multitude of outcomes in the form
of a sheaf of horizontal lines parallel to the time axis, approximating the infinite number
of all possible outcomes corresponding to the ensemble (= the process itself)

x(n) = a (6.36)

This process is stationary, since it is evident that mean value, variance, probability
density function, autocorrelation function, in short all statistics, are invariant with time.

But we can’t extract any info on statistics (for instance mean value) by processing
data from a SINGLE realization, say

124 6 Introduction to discrete random processes

x1(n) = a1 (6.37)

Therefore the process is not ergodic.

The most important ergodic process btw, is white noise. From one realization you
may extract all relevant statistics.

7

Spectral estimation

7.1 Introduction to estimation theory

Goal of estimation theory: estimate the value of an unknown parameter from a set
of observations of a random variable.

Example: given a set of observations from a Gaussian distribution, estimate the
mean or variance from these observations.

Bias of an estimator

The difference between the expected value of the estimate and the actual value θ is
called the bias and will be denoted by B.

B = θ − E{θ̂N} (7.1)

If the bias is zero, then the expected value of the estimate is equal to the true value,
that is

E{θ̂N} = θ (7.2)

and the estimate is said to be unbiased.

If B 6= 0 then θ̂ is said to be biased.

More often an estimate is biased, but B → 0 when N →∞

lim
N→∞

E{θ̂N} = θ (7.3)

then the estimate is said to be asymptotically unbiased.

126 7 Spectral estimation

Variance of an estimator

It is desirable that an estimator be either unbiased or asymptotically unbiased. Never-
theless, this is not enough to have a good estimator.

For an estimate to be meaningful, it is necessary that

Var→ 0 as N →∞ (7.4)

or, in other words

lim
N→∞

var{θ̂N} = lim
N→∞

{|θ̂N − E{θ̂N}|2} = 0 (7.5)

If θ̂N is unbiased, E{θ̂N} = θ, it follows from the Tchebycheff inequality that, for any
ε > 0

Pr{|θ̂N − θ| ≥ ε} ≤
var{θ̂N}

ε2
(7.6)

⇒ if var→ 0 as N →∞, then the probability that θ̂N differs by more than ε from the
true value will go to zero.

In this case, θ̂N is said to converge to θ with probability one.

Another for of convergence, stronger than the convergence with probability one, is
the mean square convergence.

An estimate θ̂N is said to converge to θ in mean-square sense, if

lim
N→∞

E{|θ̂N − θ|2} = 0 (7.7)

• For an unbiased estimator this is equivalent to the previous condition that the vari-
ance of the estimate goes to zero

• An estimate is said to be consistent if it converges, in some sense, to the true value
of the parameter

• We say that the estimator is consistent if it is asymptotically unbiased and has
variance that goes to zero as N →∞

7.1 Introduction to estimation theory 127

Example: sample mean

What can we say about the sample mean as an estimator?

Let {x(n)} be an i.i.d. sequence.

Sample mean:

µx =
1
N

N∑
n=1

x(n) (7.8)

Expected value of the sample mean (bias)

E{µx} =
1
N

N∑
n=1

E{x(n)} = µx (7.9)

Variance of the sample mean

var{µx} =
1
N2

N∑
n=1

var{x} =
σ2

x

N
(7.10)

The sample mean is an unbiased estimator, and it is consistent.

Estimation problem formulation

We seek to determine from a set of data, a set of parameters such that their values
would yield the highest probability of obtaining the observed data.

• The unknown parameters may be seen as deterministic or random variables

• There are essentially two alternatives to the statistical case

– no a priori distribution assumed: Maximum Likelihood

– a priori distribution known: Bayes

• Key problem: to estimate a group of parameters from a discrete-time signal or dataset

Given an N -point dataset (x0, x1, . . . , xN−1) which depends on an unknown param-
eter θ, define an estimator as some function, g, of the dataset, i.e.

θ̂ = g(x(0), x(1), . . . , x(N − 1)) (7.11)

which may be used to estimate θ. This is the problem of parameter estimation.

128 7 Spectral estimation

Maximum likelihood estimation

Let x = (x0, x1, . . . , xN−1) be a random sample from the parametric p.d.f. f(x; θ),
where θ is a parameter vector. Let f(x|θ) denote the p.d.f. that specifies the prob-
ability of observing the data vector x given the parameter vector θ. The parameter
θ = (θ0, θ1, . . . , θM−1) is a vector defined on a multi-dimensional space.

If individual observations, xi are statistically independent of one another, than ac-
cording to the theory of probability, the p.d.f. for the data x = (x0, x1, . . . , xN−1) given
the parameter vector θ can be expressed as a multiplication of p.d.f.’s for individual
observations,

f(x = (x0, x1, . . . , xN−1)|θ) = f1(x1|θ)f2(x2|θ) · · · fN−1(xN−1|θ) (7.12)

Given a set of parameter values, the corresponding p.d.f. will show that some data
are more probable than other data. In reality, however, we have already observed the
data. Accordingly we are faced with an inverse problem: given the observed data and a
model of interest, find the one p.d.f., among all the probability densities that the model
prescribes, that is most likely to have produced the data. To solve this inverse problem,
we define the likelihood function by reversing the roles of the data vector x and the
parameter vector θ in f(x|θ), i.e.

L(θ|x) = f(x|θ) (7.13)

Thus L(θ|x) represents the likelihood of the parameter θ given the observed data x, and
as such is a function of θ.

Consider the problem of estimating the mean θ = ηx = 1 of a Gaussian p.d.f. with
known variance σ2

x = 2 (see Figure 7.1a)

f(x; θ) =
1√

2πσ2
x

e
− (x−θ)2

2σ2
x (7.14)

We can write the likelihood function as

L(θ|x) = f(x = (x0, x1, . . . , xN−1)) = f1(x1|θ)f2(x2|θ) · · · fN−1(xN−1|θ) =

=
[

1√
2πσ2

x

e
− (x0−θ)2

2σ2
x

]
·
[

1√
2πσ2

x

e
− (x1−θ)2

2σ2
x

]
· · ·

[
1√

2πσ2
x

e
−

(xN−1−θ)2

2σ2
x

]

=
(

1√
2πσ2

x

)N

e
− 1

2σ2
x

∑N
n=1(xn−θ)2

(7.15)

The shape of the likelihood function is shown in Figure 7.1b. There is an important
difference between the p.d.f. f(x; θ) and the likelihood function L(θ|x). As illustrated in

7.1 Introduction to estimation theory 129

Figure 7.1, the two functions are defined on different axes, and therefore are not directly
comparable to each other. Specifically, the p.d.f. in Figure 7.1a is a function of the data
given a particular set of parameter values, defined on a data scale. On the other hand, the
likelihood function is a function of the parameter given a particular set of observed data,
defined on the parameter scale. In short, 7.1a tells us the probability of a particular data
value for a fixed parameter, whereas Figure 7.1b tells us the likelihood (”unnormalized
probability”) of a particular parameter value for a fixed data set. Note that the likelihood
function in Figure 7.1b is a curve because there is only one parameter which is assumed
to be unknown. If the model has two parameters, the likelihood function will be a
surface sitting above the parameter space. In general, for a model with k parameters,
the likelihood function L(θ|x) takes the shape of a k − dim geometrical surface.

−10 −5 0 5 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Gaussian p.d.f. η
x
 = 1, σ

x
2 = 2

x

a)

−10 −5 0 5 10
0

0.5

1

1.5
x 10

−90

θ

b)

Likelihood function − L(θ, x)

Fig. 7.1. a) Gaussian p.d.f. ηx = 1, σ2
x = 2, b) Likelihood function L(θ|x) for a data vector of

size N = 10

Listing 7.1. Matlab

N = 10; %dataset l ength
var x = 2 ; %known var iance
theta = 1 ; %true mean (to be est imated)
x = sqr t (var x)∗ randn (N, 1) + theta ; %dataset

%pdf
s = [− 6 : 0 . 0 1 : 6] ’ ;
pdf = (1/(sq r t (2∗ pi)∗ var x))∗ exp(−(s − theta) .ˆ2/(2∗ var x)) ;

%l i k e l i h o o d
the t a s = [− 6 : 0 . 0 1 : 6] ’ ;
L = ones (l ength (th e t a s) , 1) ;
f o r n=1:N

L = L .∗ (1/(sq r t (2∗ pi)∗ var x)) .∗ exp ((−1/(2∗ var x))∗ (x (n) − t h e t a s) . ˆ 2) ;
end

subplot (1 ,2 , 1)
p lo t (s , pdf) ;
x l abe l ({ ’ x ’ ; ’ ’ ; ’ a) ’ }) ; t i t l e (’ G a u s s i a n p . d . f . \ e t a _ x = 1 , \ s i g m a _ x ^ 2 = 2 ’) ;
subplot (1 , 2 , 2)
p lo t (theta s , L) ;
x l abe l ({ ’ \ t h e t a ’ ; ’ ’ ; ’ b) ’ }) ; t i t l e (’ L i k e l i h o o d f u n c t i o n - L (\ t h e t a , x) ’) ;

130 7 Spectral estimation

The principle of maximum likelihood estimation (MLE) states that the desired prob-
ability distribution is the one that makes the observed data most likely, which means
that one must seek the value of the parameter vector that maximizes the likelihood
function L(θ|x). The resulting parameter vector, which is sought by searching the multi-
dimensional parameter space, is called the MLE estimate.

θML = arg max
θ
L(θ|x) (7.16)

Getting back to our example, the MLE of the mean can be obtained by taking the
derivative of L(θ|x) with respect to θ and setting the result to zero. For the problem at
hand, it is more convenient to define the log-likelihood function logL(θ|x) and compute

∂ logL(θ|x)
∂θ

=
∂

∂θ

[
N log(

√
2πσ2

x)− 1
2σ2

x

N∑
n=1

(xn − θ)2
]

=
2

2σ2
x

N∑
n=1

(xn − θ) (7.17)

∂ logL(θ|x)
∂θ

= 0⇒ θML =
1
N

N∑
n=1

xn (7.18)

Therefore, for the case of Gaussian p.d.f. with known variance, the sample mean is the
MLE of the true mean. Note that ∂ log L(θ|x)

∂θ = 0 is only a necessary condition for the
existence of a MLE estimate. An additional condition must also be satisfied to ensure
that logL(θ|x) is a maximum and not a minimum. This can be checked by calculating
the second derivatives of the log-likelihoods and showing whether they are all negative
at θ = θML. For the example above

∂2 logL(θ|x)
∂θ2

= −N < 0 (7.19)

In practice, however, it is usually not possible to obtain an analytic form solution for
the MLE estimate, especially when the model involves several parameters and its PDF
is highly non-linear. In such situations, the MLE estimate must be sought numerically
using nonlinear optimization algorithms.

Bayesian estimation

The idea of Bayesian estimation is to maximize the a-posteriori probability (MAP) of
the unknown parameter(s) θ given the data x, i.e.

θMAP = arg max
θ
f(θ|x) (7.20)

Using the Bayes rule, we can write

7.2 Basic concepts 131

θMAP = arg max
θ
f(θ|x) = arg max

θ

f(x|θ)p(θ)
p(x)

= arg max
θ
f(x|θ)p(θ) (7.21)

where the last equality follows from the fact that p(x) is independent from θ. Unlike
the MLE, the MAP estimate (or Bayesian estimate) also depends on some prior knowl-
edge about the parameter θ, expressed by the p.d.f. p(θ). When no prior knowledge is
available, thus p(θ) is a uniform p.d.f., the MAP estimate is equivalent to the MLE
estimate.

7.2 Basic concepts

Goal: from a finite record of a stationary data sequence, estimate how the total power
is distributed over frequency

Applications

• Speech processing and audio devices

• Source localization using sensor arrays

• Medical diagnosis

• Control system design

• Hidden periodicity finding

• Radar, sonar

Energy spectral density

Let {y(t); t = 0,±1,±2, . . .} denote a deterministic discrete-time data sequence.

Assume that {y(t)} has finite energy, which means that

+∞∑
t=−∞

|y(t)|2 <∞ (7.22)

Then the sequence {y(t)} possesses a discrete-time Fourier transform (DTFT) defined
as

Y (ω) =
+∞∑

t=−∞
y(t)e−jωt (7.23)

132 7 Spectral estimation

In the rest of this chapter we will use the symbol Y (ω) in lieu of the more cumbersome
Y (ejω), to denote the DTFT

Recall the Parseval’s equality

+∞∑
t=−∞

|y(t)|2 =
1
2π

∫ +π

−π

S(ω)dω (7.24)

where
S(ω) , |Y (ω)|2 = Energy Spectral Density (ESD) (7.25)

Define

ρ(k) =
+∞∑

t=−∞
y(t)y∗(t− k) (7.26)

It is readily verified that

+∞∑
k=−∞

ρ(k)e−jωk =
+∞∑

k=−∞

+∞∑
t=−∞

y(t)y∗(t− k)e−jωtejω(t−k)

=

[
+∞∑

t=−∞
y(t)e−jωt

][
+∞∑

s=−∞
y(s)e−jωs

]∗
= S(ω) (7.27)

which shows that S(ω) can be obtained as the DTFT of the autocorrelation of the
finite-energy sequence {y(t)}.

7.3 Power spectral density

The above definitions can be extended in a rather straightforward manner to the case
of random signals. In general, a random signal has infinite energy

+∞∑
t=−∞

|y(t)|2 =∞ (7.28)

but finite average power
E{|y(t)|2} <∞ (7.29)

where E{·} denotes the expectation over the ensemble of realizations. For simplicity
reasons, in what follows we will use the name power spectral density (PSD) for that
quantity.

7.3 Power spectral density 133

If we assume that E{y(t)} = 0, the autocovariance sequence (ACS) of {y(t)} is
defined as

r(k) = E{y(t)y∗(t− k)} (7.30)

Since we consider only second order stationary sequences (WSS), the ACS depends only
on the lag between two samples averaged.

Recall the properties of the ACS:

• r(k) = r∗(−k)

• r(0) ≥ |r(k)| ∀k

Let us define the covariance matrix of {y(t)} as

Rm =

r(0) r∗(1) · · · r∗(m− 1)

r(1) r(0)
. . .

...
...

...
... r∗(1)

r(m− 1) · · · r(1) r(0)

 (7.31)

The covarince matrix Rm is positive semidefinite,

a∗Rma ≥ 0 ∀ vector a (7.32)

Power spectral density: first definition

The PSD is defined as the DTFT of the ACS

φ(ω) =
+∞∑

k=−∞

r(k)e−jωk (7.33)

Note that

r(k) =
1
2π

∫ +∞

−∞
φ(ω)ejωkdω inverse DTFT (7.34)

Interpretation:

• r(0) = E{|y(t)|2} = 1
2π

∫ +∞
−∞ φ(ω)dω

• φ(ω)dω = infinitesimal signal power in the band ω ± dω
2

134 7 Spectral estimation

Power spectral density: second definition

φ(ω) = lim
N→∞

E

 1
N

∣∣∣∣∣
N∑

n=1

y(t)e−jωt

∣∣∣∣∣
2
 (7.35)

Note that φ(ω) = limN→∞E
{

1
N |YN (ω)|2

}
, where

YN (ω) =
N∑

t=1

y(t)e−jωt (7.36)

is the finite DTFT of {y(t)}.

Properties

• φ(ω) = φ(ω + 2π) ∀ω, thus we can restrict our attention to ω ∈ [−π,+π] ⇔ f ∈
[−1/2,+1/2]

• φ(ω) ≥ 0

• If y(t) is real,

– then φ(ω) = φ(−ω),

– otherwise φ(ω) 6= φ(−ω)

Transfer of PSD through linear systems

Consider the following LTI causal system described by its z transform

H(z) =
∞∑

k=0

hkz
−k (7.37)

The transfer function of the system is (with a slight abuse of notation)

H(ω) = H(z)|z=ejω =
∞∑

k=0

hke
−jωk (7.38)

The input {e(t)} and the output {y(t)} sequences are related via the convolution sum
(see Figure 7.2)

y(t) =
+∞∑

k=−∞

hke(t− k) (7.39)

From equation (7.37) we obtain:

7.4 Spectral estimation problem 135

Fig. 7.2. Relationship between the PSDs of the input and output of a linear system

ry(k) =
+∞∑

p=−∞

+∞∑
m=−∞

hph
∗
mE{e(t− p)e∗(t−m− k)}

=
+∞∑

p=−∞

+∞∑
m=−∞

hph
∗
mre(m+ k − p) (7.40)

Inserting (7.40) in (7.33) gives

φy(ω) =
+∞∑

k=−∞

+∞∑
p=−∞

+∞∑
m=−∞

hph
∗
mre(m+ k − p)e−jω(k+m−p)ejωme−jωp

=

[
+∞∑

k=−∞

hpe
−jωp

][
+∞∑

m=−∞
h∗me

jωm

][
+∞∑

τ=−∞
re(τ)e−jωτ

]
= |H(ω)|2φe(ω) (7.41)

7.4 Spectral estimation problem

The spectral estimation problem can be stated formally as follows: from a finite-length
record {y(1), y(2), . . . , y(N)} of a second order stationary random process, determine an
estimate φ̂(ω) of its power spectral density φ(ω), for ω ∈ [−π,+π].

Remarks:

• It is desirable to obtain an estimate φ̂(ω) as close to φ(ω) as possible.

• The main limitation on the quality of most PSD estimates is due to the quite small
number of data samples N usually available

• Most commonly, N is limited by the fact that the signal under study can be consid-
ered wide sense stationary only over short observation intervals

There are two main approaches

• Nonparametric

– based on the definitions in equation (7.33) and equation (7.35)

– no assumptions on the functional form of φ(ω)

• Parametric

– Assumes a parametrized functional form of the PSD

– Can be used only when there is enough information about the studied signal

136 7 Spectral estimation

7.5 Nonparametric spectral estimation

Periodogram method

The periodogram method relies on the definition of the PSD

φ(ω) = lim
N→∞

E

 1
N

∣∣∣∣∣
N∑

n=1

y(t)e−jωt

∣∣∣∣∣
2
 (7.42)

Neglecting the expectation and the limit operation that cannot be performed with a
finite number of samples N , we get

φ̂p(ω) =
1
N

∣∣∣∣∣
N∑

n=1

y(t)e−jωt

∣∣∣∣∣
2

(7.43)

• Natural estimator

• Used by Schuster (1900) to determine ”hidden periodicities” (hence the name)

Listing 7.2. Matlab

[x , Fs , nb i t s] = wavread (’ . . / f i l e s o u r c e s / f l u t e . w a v ’) ;

t s t a r t = 1 ; %sec
D = 0 . 050 ; %observat ion time = 50msec
n = t s t a r t ∗Fs : 1 : (t s t a r t + D)∗Fs ; %in samples

y = x(n) ; N = length (y) ;
M = N; %number o f f requency bins

phi p = (1/N)∗ abs (f f t (y ,M)) . ˆ 2 ;
w = 2∗ pi ∗ [0 :M−1]/M;
p lo t (w, phi p) ;
ax i s ([0 2∗ pi 0 100])

Correlogram

The ACS based definition (7.33) of the PSD leads to the correlogram spectral estimator

φ̂c(ω) =
+(N−1)∑

k=−(N−1)

r̂(k)e−jωk (7.44)

where r̂(k) denotes the estimate of the covariance lag r(k), obtained from the available
sample {y(1), y(2), . . . , y(N)}.

There are two standard way to obtain an estimate r̂(k)

7.5 Nonparametric spectral estimation 137

• Standard unbiased estimate

r̂(k) =
1

N − k

N∑
t=k+1

y(t)y∗(t− k), k ≥ 0 (7.45)

• Standard biased estimate

r̂(k) =
1
N

N∑
t=k+1

y(t)y∗(t− k), k ≥ 0 (7.46)

For both estimators
r̂(k) = r̂∗(−k), k < 0 (7.47)

The biased estimate is usually preferred, for the following reasons

• the ACS sequence decays rather rapidly so that r(k) is quite small for large lags k.
Comparing the definition we see that (7.46) will be small for large k, whereas (7.45)
may take erratic values for large k, as it is obtained averaging only a few products.

• the ACS sequence defined by (7.46) is guaranteed to be positive semidefinite, while
this is not the case for (7.45). If the ACS is not positive semidefinite, the PSD
estimator in (7.44) may lead to negative spectral estimates

• if the biased ACS estimator is used in φ̂(ω), then

φ̂p(ω) =
1
N

∣∣∣∣∣
N∑

n=1

y(t)e−jωt

∣∣∣∣∣
2

=
+(N−1)∑

k=−(N−1)

r̂(k)e−jωk

φ̂c(ω) (7.48)

Listing 7.3. Matlab

[x , Fs , nb i t s] = wavread (’ . . / f i l e s o u r c e s / f l u t e . w a v ’) ;

t s t a r t = 1 ; %sec
D = 0 . 050 ; %observat ion time = 50msec
n = t s t a r t ∗Fs : 1 : (t s t a r t + D)∗Fs ; %in samples

y = x(n) ; N = length (y) ;

M = 2∗N − 1 ;

r = xcorr (y , ’ b i a s e d ’) ;
r = c i r c s h i f t (r , N) ;

ph i r = f f t (r ,M) ;
w = 2∗ pi ∗ [0 :M−1]/M;
p lo t (w, ph i r) ;

138 7 Spectral estimation

Statistical performance of φ̂p(ω) and φ̂c(ω)

Summary:

• Both are asymptotically (for large N) unbiased:

E{φ̂p(ω)} → φ(ω) as N →∞ (7.49)

• Both have large variance, even for large N

Thus, φ̂p(ω) and φ̂c(ω) have poor performance.

Intuitive explanation:

• r̂(k)− r(k) may be large for large |k|

• even if the errors {r̂(k)−r(k)}N−1
|k|=0 are small, there are ”so many” that when summed

in φ̂p(ω)− φ(ω), the PSD error is large

Bias analysis

E{φ̂p(ω)} = E{φ̂c(ω)} =
(N−1)∑

k=−(N−1)

E{r̂(k)}e−jωk

=
(N−1)∑

k=−(N−1)

(
1− |k|

N

)
r(k)e−jωk

=
+∞∑

k=−∞

wB(k)r(k)e−jωk (7.50)

wB(k)

{(
1− |k|

N

)
, |k| ≤ N − 1

0, |k| ≥ N
(7.51)

The above sequence is called the triangular window, or the Bartlett window.

The DTFT of the product of two sequences is equal to the convolution of their
respective DTFT’s. Thus,

E{φ̂p(ω)} =
1
2π

∫ +π

−π

φ(ζ)WB(ω − ζ)dζ (7.52)

Where WB(ω) is the DTFT of the triangular window, and it is equal to

7.5 Nonparametric spectral estimation 139

Fig. 7.3. WB(ω)/WB(0) for N = 25

WB(ω) =
1
N

[
sin(ωN/2)
sin(ω/2)

]2
(7.53)

An illustration of WB(ω) is depicted in Figure 7.3 for N = 25.

Ideally, to have zero bias, we want WB(ω) = Dirac impulse δ(ω). The main lobe
width decreases as 1/N . For small values of N , WB(ω) may differ quite a bit from δ(ω).

If the ACS estimator in (7.45) is used, the corresponding window function that would
appear is the DTFT of the rectangular window

wR(k) =

{
1 |k| ≤ N − 1
0, |k| ≥ N

(7.54)

A straightforward calculation gives

WR(ω) =
sin[(N − 1/2)ω]

sin(ω/2)
(7.55)

Note that, unlike WB(ω), WR(ω) can assume negative values for some values of ω, thus
providing estimate of the PSD that can be negative for some frequencies.

Equation (7.52) suggests that bias manifests itself in two different ways

• Main lobe width causes smearing (or smooting): details in φ(ω) separated in f by
less than 1/N are not resolvable. Thus: periodogram resolution limit = 1/N

• Sidelobe level causes leakage:

Summary of periodogram bias properties:

• For small N , severe bias

• As N →∞, WB(ω)→ δ(ω), so φ̂(ω) is asymptotically unbiased.

140 7 Spectral estimation

Variance analysis

As N →∞:

E{[φ̂p(ω1)− φp(ω1)][φ̂p(ω2)− φp(ω2)]} =

{
φ2(ω1) ω1 = ω2

0, ω1 6= ω2

(7.56)

• inconsistent estimate

• erratic behaviour

Fig. 7.4. The periodogram gives an inconsistent estimate of the PSD

Listing 7.4 and Figure 7.5 demonstrate the effect of bias and variance for the case of
periodogram-based and Blackman-Tukey spectral estimation. Notice that in the latter
case variance is significantly reduced at a cost of increased bias.

Listing 7.4. Matlab

c l e a r
N = 2ˆ14;
N r e a l i z a t i on s = 1000;
Ntot = N∗Nrea l i z a t i on s ;
M = f l o o r (N/8) ;
LINEAR = 0; %l i n e a r or log y−ax i s

% F i l t e r t r a n s f e r func t i on H(z) = 1/A(z)
rho 1 = 0 . 9 9 ;
the ta 1 = 0.2∗ pi ;
rho 2 = 0 . 9 5 ;
the ta 2 = 0.3∗ pi ;
a = conv ([1 −2∗cos (the ta 1)∗ rho 1 rho 1 ˆ2] , [1 −2∗cos (the ta 2)∗ rho 2 rho 2 ˆ 2]) ;

Nf f t = N/2 ;
[H, w] = f r eq z (1 , a , Nf f t) ;

w p = 2∗ pi ∗ [0 :N/2−1]/N;
w BT = 2∗ pi ∗ [0 :M − 1]/(2∗M − 1) ;

phi p = ze ro s (Nrea l i z a t i on s , N) ;
phi BT = zero s (Nrea l i z a t i on s , 2∗M − 1) ;

f o r i = 1 : N r e a l i z a t i on s

e = randn (N, 1) ;
y = f i l t e r (1 , a , e) ;

7.5 Nonparametric spectral estimation 141

% periodogram
phi p (i , :) = (1/N)∗ abs (f f t (y ,N)) . ˆ 2 ;

% Blackman−Tukey
r = xcorr (y , ’ b i a s e d ’) ;
r = r (N − M + 1:N + M − 1) ;
r = r .∗ ba r t l e t t (2∗M − 1) ;
% se t r = r .∗ ones (2∗M − 1 , 1) ; %and M = N fo r the corre logram
r = c i r c s h i f t (r , −M+1);
phi BT (i , :) = r e a l (f f t (r ,2∗M − 1)) ;

% p lo t i nd i v i dua l r e a l i z a t i o n s
% i f LINEAR == 1
% plot (w p , phi p (i , 1 :N/2) , ’ g ’ , ’ LineWidth ’ , 1)
% hold on
% plot (w BT, phi BT (i , 1 :M) , ’ b ’ , ’ LineWidth ’ , 1)
% plo t (w, (abs (H) . ˆ 2) , ’ r ’ , ’ LineWidth ’ , 2) ;
% ylim ([0 , 1 0 ˆ 6]) ;
% hold o f f
% pause ;
% e l s e i f LINEAR == 0
% plot (w p , 10∗ log10 (phi p (i , 1 :N/2)) , ’ g ’ , ’ LineWidth ’ , 1)
% hold on
% plot (w BT, 10∗ log10 (phi BT (i , 1 :M)) , ’ b ’ , ’ LineWidth ’ , 1)
% plo t (w, 10∗ log10 ((abs (H) . ˆ 2)) , ’ r ’ , ’ LineWidth ’ , 2) ;
% ylim ([−80 , 6 0]) ;
% hold o f f
% pause ;
% end

end

phi p mean = mean(phi p) ’ ;
ph i p var = var (phi p) ’ ;

phi BT mean = mean(phi BT) ’ ;
phi BT var = var (phi BT) ’ ;

% p lo t expected va lues ac ro s s r e a l i z a t i o n s : E[phi p] and E[phi BT]
i f LINEAR == 0

plo t (w p , 10∗ log10 (phi p mean (1 :N/2)) , ’ g ’ , ’ L i n e W i d t h ’ , 2)
hold on
p lo t (w p , 10∗ log10 (phi p mean (1 :N/2) + sqr t (ph i p var (1 :N/2))) , ’ g - - ’)
p lo t (w p , 10∗ log10 (max(phi p mean (1 :N/2) − sq r t (ph i p var (1 :N/2)) , 10e−3)) , ’ g - - ’)

p lo t (w BT, 10∗ log10 (phi BT mean (1 :M)) , ’ b ’ , ’ L i n e W i d t h ’ , 2)
p lo t (w BT, 10∗ log10 (phi BT mean (1 :M) + sqr t (phi BT var (1 :M))) , ’ b - - ’)
p lo t (w BT, 10∗ log10 (max(phi BT mean (1 :M) − sq r t (phi BT var (1 :M)) , 10e−3)) , ’ b - - ’)
p lo t (w, 10∗ log10 (abs (H) . ˆ 2) , ’ r ’ , ’ L i n e W i d t h ’ , 2) ;

hold o f f
e l s e i f LINEAR == 1

plo t (w p , phi p mean (1 :N/2) , ’ g ’ , ’ L i n e W i d t h ’ , 2)
hold on
p lo t (w p , phi p mean (1 :N/2) + sqr t (ph i p var (1 :N/2)) , ’ g - - ’)
p lo t (w p , max(phi p mean (1 :N/2) − sq r t (ph i p var (1 :N/2)) ,10 e−3) , ’ g - - ’)

p lo t (w BT, phi BT mean (1 :M) , ’ b ’ , ’ L i n e W i d t h ’ , 2)
p lo t (w BT, phi BT mean (1 :M) + sqr t (phi BT var (1 :M)) , ’ b - - ’)
p lo t (w BT, max(phi BT mean (1 :M) − sq r t (phi BT var (1 :M)) , 10e−3) , ’ b - - ’)
p lo t (w, (abs (H) . ˆ 2) , ’ r ’ , ’ L i n e W i d t h ’ , 2) ;

hold o f f
end

legend (’ E [\ p h i _ { P } (\ o m e g a)] ’ , ’ E [\ p h i _ { P } (\ o m e g a)] + \ s i g m a ’ , ’ E [\ p h i _ { P } (\ o m e g a)] - \ s i g m a ’ , . . .
’ E [\ p h i _ { B T } (\ o m e g a)] ’ , ’ E [\ p h i _ { B T } (\ o m e g a)] + \ s i g m a ’ , ’ E [\ p h i _ { B T } (\ o m e g a)] - \ s i g m a ’ , . . .
’ \ p h i (\ o m e g a) ’) ;

142 7 Spectral estimation

0 0.5 1 1.5 2 2.5 3 3.5
−20

−10

0

10

20

30

40

50

60

E[φP(ω)]

E[φP(ω)] + σ

E[φP(ω)] − σ

E[φBT(ω)]

E[φBT(ω)] + σ

E[φBT(ω)] − σ

φ(ω)

Fig. 7.5. Effect of bias and variance for the case of periodogram-based and Blackman-Tukey
spectral estimation.

The Blackman-Tukey method

Basic idea: weighted correlogram, with small weight applied to covariances r̂(k) with
large k

φ̂BT (ω) =
M−1∑

k=−(M−1)

w(k)r̂(k)e−jωk (7.57)

where {w(k)} is the lag window.

Let W (ω) (also called spectral window) denote the DTFT of w(k). Making use of
the DTFT property, we can write

φ̂BT (ω) =
1
2π

∫ +π

−π

φ̂p(ω)W (ω − ζ)dζ (7.58)

Conclusion: φ̂BT (ω) is a locally smoothed periodogram.

• Variance decreases substantially (of the order of M/N)

• Bias increases slightly (of the order 1/M)

7.5 Nonparametric spectral estimation 143

The choice of the window is constrained by the fact that we want φ̂BT (ω) ≥ 0. If
the lag window {w(k)} is positive semidefinite (i.e. W (ω) ≥ 0), then the windowed ACS
{w(k)r̂(k)} is positive semidefinite too; which implies that φ̂BT (ω) ≥ 0 for all ω.

Listing 7.5. Matlab

Fs = 1 ; %sampling frequency
T = 1/Fs ; %sampling per iod
f1 = 1/8; %normal ized frequency
f2 = 1/16; %normal ized frequency
N = 1000; %number o f samples
n = [0 :N−1] ’ ;

y = s in (2∗ pi∗ f 1∗n∗T) + s in (2∗ pi∗ f 2∗n∗T) + 2∗ randn (N, 1) ; ;

M = f l o o r (N/10) ;

r = xcorr (y , ’ b i a s e d ’) ;
r = r (N − M + 1:N + M − 1) ;
r = r .∗ ba r t l e t t (2∗M − 1) ;
r = c i r c s h i f t (r , M) ;

phi BT = f f t (r ,M) ;
w = 2∗ pi ∗ [0 :M−1]/M;
p lo t (w, phi BT) ;
max val = 1.1∗max(phi BT) ;
ax i s ([0 2∗ pi 0 max val]) ;

Time-bandwidth product

Define

Ne =

∑M−1
k=−(M−1) w(k)

w(0)
= equiv. time width (7.59)

βe =
1
2π

∫ +π

−π
W (ω)dω

W (0)
= equiv. bandwith (7.60)

It is possible to prove that
Neβe = 1 (7.61)

This means that the more slowly the window decays to zero in one domain, the more
concentrated it is in the other domain.

The equivalent temporal width, Ne is determined by the window length (Ne ' 2M
for rectangular window, Ne ' M for triangular window). Since Neβe = 1 also the
bandwidth βe is determined by the window length, more precisely βe = O(1/M).

• As M increases, bias decreases and variance increases ⇒ choose M as a tradeoff
between variance and bias. As a rule of thumb, we should choose M ≤ N/10 in order
to reduce the standard deviation of the estimated spectrum at least three times,
compared with the periodogram.

• Choose window shape to compromise between smearing (main lobe width) and leak-
age (sidelobe level). The energy in the main lobe and in the sidelobes cannot be
reduced simultaneously, once M is given.

144 7 Spectral estimation

The Bartlett method

Basic idea: split up the available sample of N observations into L = N/M subsamples
of M observations each, then average the periodograms obtained from the subsamples
for each value of ω.

Mathematically:

yi(t) = y((i− 1)M + t) t = 1, . . . ,M the ith subsequence (7.62)

i = 1, . . . , L , [N/M] (7.63)

φ̂i(ω) =
1
M

∣∣∣∣∣
M∑

t=1

yi(t)e−jωt

∣∣∣∣∣
2

(7.64)

φ̂B(ω) =
1
L

L∑
i=1

φ̂i(ω) (7.65)

Remarks

• φ̂B(ω) ' φ̂BT (ω) with a rectangular lag window wR(k). Since the Bartlett method
implicitly uses wR(k), it has

– high resolution (little smearing)

– large leakage and relatively large variance

Listing 7.6. Matlab

Fs = 1 ; %sampling frequency
T = 1/Fs ; %sampling per iod
f1 = 1/8; %normal ized frequency
f2 = 1/16; %normal ized frequency
L = 10 ; %number o f obse rvat i ons
M = 100; %number o f samples / observat ion
N = L∗M; %to t a l number o f samples
n = [0 :N−1] ’ ;

y = s in (2∗ pi∗ f 1∗n∗T) + s in (2∗ pi∗ f 2∗n∗T) + 2∗ randn (N, 1) ; ;

p h i l = ze ro s (M, 1) ; f o r l = 0 :L−1

y l = y(1 + l ∗M:M + l ∗M) ;

ph i l = ph i l + (1/M)∗ abs (f f t (y l)) . ˆ 2 ;

end
phi B = ph i l / L ;

w = 2∗ pi ∗ [0 :M−1]/M;
p lo t (w, phi B) ;
max val = 1.1∗max(phi B) ;
ax i s ([0 2∗ pi 0 max val])

7.5 Nonparametric spectral estimation 145

Welch method

Similar to Bartlett method, but

• allow overlap of subsequences (gives more subsequences, thus better averaging)

• use data window for each periodogram; gives mainlobe-sidelobe tradeoff capability

Let
yi(t) = y((i− 1)K + t) t = 1, . . . ,M i = 1, . . . , S (7.66)

denote the ith data segment.

• if K = M , no overlap as in Bartlett method

• if K = M/2, 50% overlap, S ' 2M/N data segments

φ̂i(ω) =
1

MP

∣∣∣∣∣
M∑

t=1

v(t)yi(t)e−jωt

∣∣∣∣∣
2

(7.67)

where P denotes the power of the temporal window {v(t)}

P =
1
M

M∑
t=1

|v(t)|2 (7.68)

The Welch estimate is determined by averaging the windowed periodograms

φ̂W (ω) =
1
S

S∑
i=1

φ̂i(ω) (7.69)

The Welch method is approximately equal to Blackman-Tuckey with a non-rectangular
lag window.

Listing 7.7. Matlab

Fs = 1 ; %sampling frequency
T = 1/Fs ; %sampling per iod
f1 = 1/8; %normal ized frequency
f2 = 1/16; %normal ized frequency
M = 200; %number o f samples / observat ion
K = M/4; %new samples / observat ion
N = 1000; %number o f samples
S = N/K − (M − K)/K; %number o f obse rvat i ons
n = [0 :N−1] ’ ;

y = s in (2∗ pi∗ f 1∗n∗T) + s in (2∗ pi∗ f 2∗n∗T) + 2∗ randn (N, 1) ;

ph i s = ze ro s (M, 1) ;
v = hamming(M) ;
P = (1/M)∗sum(v . ˆ 2) ;
f o r s = 0 : S−1

y s = y(1 + s∗K:M + s∗K) ;

146 7 Spectral estimation

ph i s = ph i s + (1/(M∗P))∗ abs (f f t (v .∗ y s)) . ˆ 2 ;

end
phi W = ph i s / S ;

w = 2∗ pi ∗ [0 :M−1]/M;
p lo t (w, phi W) ;
max val = 1.1∗max(phi W) ;
ax i s ([0 2∗ pi 0 max val])

Daniell

It can be proved that, for N >> 1, {φ̂(ωi)} are nearly uncorrelated random variables
for {

ωi =
2π
N
i

}N−1

j=0

(7.70)

The basic idea of the Daniel method is to perform local averaging of 2J + 1 samples
in the frequency domain to reduce the variance by about 2J + 1

φ̂D(ω) =
1

2J + 1

k+J∑
i=k−J

φ̂p(ωi) (7.71)

As J increases:

• bias increases (more smoothing)

• variance decreases (more averaging)

The Daniell method is approximately equal to Blackman-Tuckey with a rectangular
spectral window.

7.6 Parametric spectral estimation

The parametric of model-based methods of spectral estimation assume that the signal
satisfies a generating model with known functional form, and then proceed in estimating
the parameters in the assumed model (see Figure 7.6).

Typically, the functional form of the PSD is a rational function in e−jω.

φ(ω) =

∑
|k|≤m γke

−jωk∑
|k|≤n ρke−jωk

(7.72)

where γ−k = γ∗k and ρ−k = ρ∗k

φ(ω) can approximate arbitrarily well any continuous PSD, provided m and n are
chosen sufficiently large.

Note, however

7.6 Parametric spectral estimation 147

Fig. 7.6. Parametric spectral estimation

• choice of m and n is not simple

• some PSDs are not continuous

By Spectral Factorization theorem, a rational φ(ω) can be factored as

φ(ω) =
∣∣∣∣B(ω)
A(ω)

∣∣∣∣2 σ2 (7.73)

A(z) = 1 + a1z
−1 + a2z

−2 + . . .+ anz
−n (7.74)

B(z) = 1 + b1z
−1 + b2z

−2 + . . .+ bmz
−m (7.75)

and A(ω) = A(z)|z=ejω .

The arbitrary rational PSD in (7.73) can be associated with a signal obtained by
filtering white noise {e(n)} of power σ2 through the rational filter with transfer function
H(ω) = B(ω)/A(ω). In the z-domain we can write

Y (z) =
B(z)
A(z)

E(z) (7.76)

or, alternatively
A(z)Y (z) = B(z)E(z) (7.77)

Depending on the values assumed by m and n we can have the following cases

• if m = 0 and n 6= 0, autoregressive model (AR), A(z)Y (z) = E(z)

• if m 6= 0 and n = 0, moving average model (MA), Y (z) = B(z)E(z)

• if m 6= 0 and n 6= 0, ARMA model (autoregressive, moving average), A(z)Y (z) =
B(z)E(z)

By assumption, φ(ω) is finite for all ω values. Therefore A(z) cannot have any root
exactly on the unit circle. Furthermore, since poles and zeros of φ(ω) are in reciprocal
pairs, it is always possible to choose A(z) to have all its roots strictly inside the unit
circle.

148 7 Spectral estimation

Covariance structure of ARMA processes

We derive an expression for the covariances of an ARMA process in terms of the pa-
rameters {ai}ni=1, {bi}mi=1 and σ2.

Equation (7.77) can be rewritten as

y(t) +
n∑

i=1

aiy(t− i) =
m∑

j=0

bje(t− j) (7.78)

Multiplying by y∗(t− k) and taking the expectation gives

r(k) +
n∑

i=1

air(k − i) =
m∑

j=0

bjE{e(t− j)y∗(t− k)} = σ2
m∑

j=0

bjh
∗
j−k

= 0 for k > m (7.79)

In fact

H(z) =
B(z)
A(z)

=
∞∑

k=0

hkz
−k (h0 = 1) (7.80)

which gives

y(t) =
∞∑

k=0

hke(t− k) (7.81)

Then the second term becomes

E{e(t− j)y∗(t− k)} = E

{
e(t− j)

∞∑
s=0

h∗se
∗(t− k − s)

}
= σ2

∞∑
s=0

h∗sδj,k+s = σ2h∗j−k

(7.82)

AR

In the ARMA class, the autoregressive or all-pole signals constitute the type that is
most frequently used in applications. The AR equation may model spectra with narrow
peaks by placing zeros of the A-polynomial close to the unit circle.

For AR signals, m = 0 and B(z) = 1. Thus, equation (7.79) holds for k > 0. Also,
for k = 0, we get

r(0) +
n∑

i=1

air(−i) = σ2
m∑

j=0

bjh
∗
j = σ2 (7.83)

Combining this equation with the following set of equations for k > 0

7.6 Parametric spectral estimation 149

r(k) +
n∑

i=1

air(k − i) = 0 k > 0 (7.84)

we form a system of linear equations
r(0) r(−1) · · · r(−n)

r(1) r(0) · · ·
...

...
...

. . . r(−1)
r(n) · · · · · · r(0)

1
a1

...
an

 =

σ2

0
0
0

 (7.85)

The above equations are called the Yule-Walker equations. If the {r(k)}nk=0 were known,
we could solve for

θ = [a1, a2, . . . , an] (7.86)

by using all but the first row.
r(1)

...
r(n)

+

r(0) · · · r(−n+ 1)

...
. . .

...
r(n− 1) · · · r(0)

a1

...
an

 =

0
...
0

 (7.87)

or, with obvious definition
rn +Rnθ = 0 (7.88)

The solution is θ = −R−1
n rn. Once θ is found, σ2 can be obtained from (7.83).

If the true ACS is unknown, we can replace r(k) with r̂(k) and solve for {âi} and
σ̂2. Then, the PSD estimate is

φ̂(ω) =
σ̂2

|Â(ω)|2
(7.89)

Listing 7.8. Matlab

Nf f t = 1024; N = 1000; s igma e = 10 ; n = 3 ;

a = poly ([0 . 9 9 0.99∗ exp (j ∗pi /4) 0.99∗ exp(− j ∗pi / 4)]) ;
b = 1 ;

[H, w] = f r eq z (b , a , Nf f t) ;

%generate s i g n a l accord ing to parametr ic model
z = sigma e∗randn (N, 1) ;
y = f i l t e r (b , a , z) ;

%est imate AR c o e f f i c i e n t s
r = xcorr (y , ’ b i a s e d ’) ;

Rx = t o e p l i t z (r (N:N+n−1) , r (N:−1:N−n+1));
rz = r (N+1:N+n) ;
theta =−Rxˆ(−1)∗ rz ;
var z = r (N) +sum(theta .∗ r (N−1:−1:N−n)) ;

%v i s u a l i z e est imated and true power specrum
plot (w, 10∗ log10 (s igma e ˆ2∗ abs (H) . ˆ 2))

150 7 Spectral estimation

hold on
[He , w] = f r eq z (1 , [1 ; theta] , N f f t) ;
p l o t (w, 10∗ log10 (var z∗abs (He) . ˆ 2) , ’ r ’)
legend (’ t r u e ’ , ’ e s t i m a t e d ’) ;
hold o f f

MA

There are two main ways to estimate φ(ω) when n = 0.

1. Estimate {bk} and σ2 and insert them in

φ(ω) = |B(ω)|2σ2 (7.90)

• It is a nonlinear estimation problem

• φ̂(ω) is guaranteed to be ≥ 0

2. Insert sample covariances {r̂(k)} in

φ(ω) =
m∑

k=−m

r(k)e−jωk (7.91)

• this is φ̂BT (ω) with a rectangular window of length 2m+ 1

• φ̂(ω) is not guaranteed to be ≥ 0

References

• Stoica P., Moses R.L., Introduction to spectral analysis, Prentice Hall, 1st edition,
January 1997, ISBN 0132584190

8

Linear prediction

8.1 Basic principles of LPC

Motivation and overview

One of the most powerful analysis techniques for voice and audio signals is the method
of Linear Predictive Coding (LPC).

Basic idea: A sample of a discrete-time signal can be approximated (predicted) as
a linear combination of past samples.

Motivation: Why Linear Predictive coding?

• LPC provides a parsimonious source-filter model for the human voice and other
signals

• LPC is good for low-bitrate coding of speech, as in Codebook Excited LP (CELP)

• LPC provides a spectral envelope in the form of an all-pole digital filter

• LPC spectral envelopes are well suited for audio work such as when estimating vocal
formants

• The LPC voice model has a loose physical interpretation

• LPC is analytically tractable: mathematically precise, simple and easy to implement

• Variations on LPC show up in other kinds of audio signal analysis

152 8 Linear prediction

Introduction

A signal sample s(n) at time n can be approximated by a linear combination of its own
past p samples:

s(n) ≈ a1s(n− 1) + a2s(n− 2) + · · ·+ aps(n− p) =
p∑

k=1

aks(n− k) (8.1)

where the coefficients ak are assumed to be constant over the duration of the analy-
sis window. If we assume that the signal can be modeled as an autoregressive (AR)
stochastic process, then s(n) can be expressed as

s(n) =
p∑

k=1

aks(n− k) +Gu(n) (8.2)

where G is the gain parameter and u(n) is a white noise excitation signal.

We’ll see that u(n) can also be taken to be a single impulse (e.g. a glottal pitch pulse
for a voice model). When u(n) is not white noise we may simply call s(n) as an all-pole
filtered version of the excitation signal u(n). Calling s(n) an AR process implies it is a
stochastic process and thus is an all-pole filter driven by white noise.

Example: voice production can be modeled as above with u(n) being the source
excitation at the glottis and s(n) being the output voice signal.

Z-transforming the previous equation gives:

S(z) =
p∑

k=1

akz
−kS(z) +GU(z) (8.3)

leading to the transfer function H(z):

H(z) =
S(z)
GU(z)

=
1

1−
∑p

k=1 akz−k
=

1
A(z)

(8.4)

where A(z) = 1−
∑p

k=1 akz
−k.

The source-filter interpretation of the above equation is provided in Figure 8.1 below
which shows the excitation source u(n) being scaled by the gain G and fed to the all-pole
system H(z) = 1/A(z) to produce the voice signal s(n).

Now let’s look at LPC from the viewpoint of estimating a signal sample based on
its past. We consider the linear combination of past samples as the linearly predicted
estimate ŝ(n), defined by

8.1 Basic principles of LPC 153

)()(1 zAzH −=
)(nu

G

)(ns

Fig. 8.1. Model of linear prediction

ŝ(n) =
p∑

k=1

aks(n− k) (8.5)

The prediction error e(n) is then defined as

e(n) = s(n)− ŝ(n) = s(n)−
p∑

k=1

aks(n− k) (8.6)

Z-transforming the above equation, we obtain E(z):

E(z) = (1−
p∑

k=1

akz
−k)S(z) = A(z)S(z) =

S(z)
H(z)

(8.7)

We can see that we can obtain E(z) by applying the filter A(z) to the signal s(n). A(z)
is called inverse filter, since A(z) = H−1(z), where H(z) is the forward filter used in the
source-filter model S(z) = H(z)E(z).

From Figure 8.1 we can deduce that the prediction error e(n) equals Gu(n), the
scaled white noise process.

Goal of linear prediction

Goal: Find the set of predictor coefficients {ak} that minimizes the mean-squared pre-
diction error over a short segment of the signal.

To formulate the problem let s define the short-time data and error signals at time
n

sn(m) = s(n+m), en(m) = e(n+m), m = 0, 1, 2, . . . ,M − 1 (8.8)

where sn(m) denotes the m-th sample of the length M signal segment starting at time
n.

We seek to minimize the energy of the short-time error signal at time n

154 8 Linear prediction

min
ai

En (8.9)

where

En =
∑
m

e2n(m) =
∑
m

[
sn(m)−

p∑
k=1

aksn(m− k)

]2

(8.10)

To solve equation (8.10) for the predictor coefficients ai, we differentiate En with respect
to each ai and set the result to zero:

∂En

∂ai
= 0, i = 0, 1, . . . , p (8.11)

∂En

∂ai
= 2

∑
m

[
sn(m)−

p∑
k=1

aksn(m− k)

]
· ∂
∂ai

[
sn(m)−

p∑
k=1

aksn(m− k)

]

= −2
∑
m

[
sn(m)−

p∑
k=1

aksn(m− k)

]
sn(m− i)

= −2

[∑
m

sn(m)sn(m− i)−
∑
m

p∑
k=1

aksn(m− k)sn(m− i)

]
= 0 (8.12)

giving ∑
m

sn(m)sn(m− i) =
p∑

k=1

âk

∑
m

sn(m− k)sn(m− i) (8.13)

where {âk} is the set of values of ak that minimizes En.

Defining the ’deterministic’ short-time covariance matrix of sn(m) as a matrix having
the (i, k)-th element as

ψn(i, k) =
∑
m

sn(m− k)sn(m− i) (8.14)

we can express equation (8.13) as:

ψn(i, 0) =
p∑

k=1

akψn(i, k), i = 1, 2, . . . , p (8.15)

This is the general form of the Wiener-Hopf equation (also called Yule-Walker equation
or the normal equation). It is a set of p linear equations in p unknowns.

The resulting MMSE (Minimum Mean-Squared Error) En can also be expressed in
terms of âk and ψn(i, k):

8.2 Statistical interpretation of LPC 155

En =
∑
m

[
sn(m)−

p∑
k=1

âksn(m− k)

]2

=
∑
m

s2n(m)− 2
∑
m

p∑
k=1

âksn(m)sn(m− k) +
∑
m

p∑
k=1

p∑
l=1

âkâlsn(m− k)sn(m− l)

=
∑
m

s2n(m)− 2
p∑

k=1

âk

∑
m

sn(m)sn(m− k) +
p∑

l=1

âl

[
p∑

k=1

âk

∑
m

sn(m− k)sn(m− l)

]

=
∑
m

s2n(m)− 2
p∑

k=1

âk

∑
m

sn(m)sn(m− k) +
p∑

l=1

âl

∑
m

sn(m)sn(m− l)

=
∑
m

s2n(m)−
p∑

k=1

âk

∑
m

sn(m)sn(m− k)

= ψn(0, 0)−
p∑

k=1

âkψn(0, k) (8.16)

Notes and discussions

• to solve the Wiener-Hopf equations (8.15), we simply compute the values of ψn(i, k)
for 1 ≤ i ≤ p and 0 ≤ k ≤ p, and then we solve the set of p linear equations

• Note that we did not define precisely the range of m for computing ψn(i, k). There
are two main methods that are used to define the limits of summation in ψn(i, k),
namely

– the autocorrelation method, in which the signal segment is windowed and zero-
padded so that m effectively ranges over (−∞,+∞). Thus we cannot access data
outside of the window, so that the number of terms in the sum depends on |i−k|

– the covariance method, in which the summation of equation (8.14) is carried
out from m = 0 to m = M − 1, such that we are accessing data outside the
window

• The computational complexity and the numerical stability in solving the Wiener-
Hopf equations depend on the prediction order p and the window length M

8.2 Statistical interpretation of LPC

Up to now we have been treating s(n) as a deterministic signal (e.g. digitized samples
of a real, recorded voice signal). Now let’s assume that {s(n)} is a real, discrete-time,

156 8 Linear prediction

zero-mean stationary random process with autocorrelation rs(m) = E[s(n)s(n − m)]
(which is real and even).

Let {ŝ(n)} be a random process that predicts {s(n)} as a linear combination of past
samples of the process.

ŝ(n) =
p∑

k=1

aks(n− k) (8.17)

Note that this is exactly same we had for the deterministic case in the previous section.
Similarly to the deterministic case, we define the error (or residual) e(n) by

e(n) = s(n)− ŝ(n) = s(n)−
p∑

k=1

aks(n− k) (8.18)

Define P (z) =
∑p

k=1 akz
−k as the prediction filter (the inverse filter A(z) = 1− P (z)).

We have, in the z-domain,

E(z) = S(z)− Ŝ(z) = S(z)− P (z)S(z) = A(z)S(z) (8.19)

Definition: the optimal (minimum) mean-square prediction error variance for linear
prediction of order p is defined as

Dp = E[e(n)2] (8.20)

and the resulting prediction gain Gp is

Gp =
σ2

s

Dp
(8.21)

where σ2
s is the average power (variance) of the signal s(n). One can show that in general

Gp ≥ 1. The worse case (Gp = 1) occurs when s(n) is a zero-mean white noise, in which
case ŝ(n) = 0 and e(n) = s(n)− ŝ(n) = s(n)

Solution to the MMSE Linear Prediction Problem

Goal: Find the set of linear prediction coefficients {ak}pk=1 which minimize the predic-
tion error variance

Dp = E[e(n)2] = E[(s(n)− ŝ(n))2] = E

[
(s(n)−

p∑
k=1

aks(n− k))2
]

(8.22)

Following the same line of reasoning as the deterministic case above, we differentiate
with respect to the prediction coefficients and we set it equal to zero:

8.2 Statistical interpretation of LPC 157

∂Dp

∂ai
= −2E

[
s(n− i)

(
s(n)−

p∑
k=1

aks(n− k)

)]
= −2E [s(n− i)e(n)] = 0 i = 1, 2, . . . , p

(8.23)
The above set of equations states the Orthogonality Principle, i.e. the optimal error
signal (in a mean square sense) is always orthogonal to the predictors:

e(n) ⊥ s(n− i), i = 1, 2, . . . , p (8.24)

or, equivalently
E[e(n)s(n− i)] = 0, i = 1, 2, . . . , p (8.25)

Substituting e(n) = s(n)− ŝ(n) yields:

E[e(n)s(n− i)] = E[{s(n)− ŝ(n)}s(n− i)]

= E[{s(n)−
p∑

k=1

aks(n− k)}s(n− i)]

= E[s(n)s(n− i)]− E[
p∑

k=1

aks(n− k)s(n− i)] (8.26)

which implies

rs(i) =
p∑

k=1

akrs(i− k), i = 1, 2, . . . , p (8.27)

Comparing this Wiener-Hopf equation with the one in the previous deterministic case
we see that they are essentially the same (except for the definition of the autocorrelation
function rs vs the covariance matrix ψ we had before).

Prediction error variance

As in the deterministic case, the prediction error variance Dp for a given prediction
order p can be expressed in terms of ak and Rs(i):

Dp = rs(0)−
p∑

k=1

akrs(k) (8.28)

and the corresponding prediction gain is:

Gp =
σ2

s

Dp
(8.29)

158 8 Linear prediction

8.3 Infinite memory linear prediction

Let’s assume that we are predicting s(n) using the entire set of past samples from
n = −∞ to n− 1

ŝ(n) =
∞∑

k=1

aks(n− k) (8.30)

In this case, the following orthogonality relations hold:

E[e(n)s(n− i)] = 0, i = 1, 2, . . . ,∞ (8.31)

Computing the autocorrelation of the optimal error re(i) gives us

re(i) = E[e(n)e(n− i)]

= E[e(n){s(n− i)− ŝ(n− i)}]

= E[e(n){s(n− i)−
∞∑

k=1

aks(n− k − i)}]

= E[e(n)s(n− i)]−
∞∑

k=1

akE[e(n)s(n− k − i)]

= 0 ∀i > 0 (8.32)

Since re(i) is even, the above also holds for i < 0.

re(i) = Dpδ(i) (8.33)

Thus we see that e(n) is a white noise process. Since e(n) is purely random in some sense,
we see that infinite-memory LP extracts all the information of s(n) into the inverse filter
A(z), and the residual of the prediction process e(n) is thus left with no sample-spanning
information about the signal.

Assuming s(n) is filtered white noise, LP divides out the filter in the frequency
domain to produce a (flat) white noise spectrum.

Infinite memory LP can be characterized as a whitening process on the signal s(n).

Remarks:

• After obtaining the prediction error e(n) from the prediction, we can recover the
original signal back from e(n) and A(z). Indeed, we can get s(n) by feeding e(n) into
the inverse filter H(z) = 1

A(z) . Thus we can say that e(n) and A(z) fully characterize
s(n)

8.3 Infinite memory linear prediction 159

• Whitening filter: A byproduct of the prediction is that we end up with a statistically
uncorrelated error process (white noise). The reason is that if e(n) is white, then all
the correlation information of s(n) is contained in the inverse filter A(z) and we can
use any white noise with the same variance in the reconstruction process.

Let’s use any arbitrary white noise e′(n) instead of e(n) and let s′(n) be the output
of the filter H(z) with e′(n) as the input. Also assume that e′(n) and e(n) have the
same power spectrum:

Se′(ω) = Se(ω) = Dp const. (8.34)

Since the power spectrum of the output only depends on the power spectrum of the
input and the filter, we can deduce that although s′(n) is not identical to s(n) it
would have the same power spectrum Ss(ω). Figure 8.2 illustrates the procedure of
whitening/shaping.

Note that in general, only the infinite-memory LP results in a true whitening filter
A(z). But by convention we call A(z) the whitening filter even if the prediction order
is finite. In the finite case, the spectrum of the prediction error is flattened, but not
white

• Shaping filter:

– H(z) = 1/A(z) is called the shaping filter

– in order for us to get back s(n) from e(n) we need a stable H(z) (or a minimum
phase A(z))

)(zA)(ne)(ns

)(/1)(zAzH =)(' ns)(' ne

whitening filter

shaping filter
Fig. 8.2. Whitening and shaping filters

160 8 Linear prediction

8.4 Computation of the LPC parameters

As described in the previous section, there are various ways to obtain the predictor
coefficients ak from the Wiener-Hopf Equation. This is because there are many ways of
defining the limits of summation in computing

ψn(i, k) =
∑
m

sn(m− i)sn(m− k) (8.35)

• Autocorrelation method: We assume that the interval for computing ψn(i, k) is
[0,M + p− 1], where p is the prediction order, and define

ψA
n (i, k) = r̂n(|i−k|) =

M−1−(i−k)∑
m=0

sn(m)sn(m+i−k) for 1 ≤ i ≤ p, 0 ≤ k ≤ p, and i ≥ k

(8.36)

Note that ψA
n (i, k) = ψA

n (k, i), and sn(m) is accessed over the range [0,M − 1].
We shall see that this is the true autocorrelation of the zero padded short time
signal sn(m), and hence the name autocorrelation method is appropriate. To obtain
ak using the autocorrelation method we use what is called the Levinson-Durbin

algorithm

• Covariance method: Define

ψC
n (i, k) =

M−1∑
m=0

sn(m− i)sn(m− k) for 1 ≤ i ≤ p, 0 ≤ k ≤ p (8.37)

Note that ψC
n (i, k) = ψC

n (k, i), and sn(m) is accessed in the range [−p,M−1] (M+p
samples). We shall see that ψC

n (i, k) is not the true autocorrelation, but the cross-
correlation between two very similar (but not identical) finite segments of the signal
s(n). In order to solve the values of ak’s we use a method known under the name of
Cholesky decomposition.

In the following we describe the autocorrelation method only.

Autocorrelation Method

Consider a short-time average prediction error defined as

En =
∑
m

e2n(m) =
∑
m

[sn(m)−
p∑

k=1

aksn(m− k)]2 (8.38)

8.4 Computation of the LPC parameters 161

One approach to defining the limits in the above is to assume that the short-time signal
sn(m) is zero outside the interval 0 ≤ m ≤M − 1. This is equivalent to defining sn(m)
to be the original signal windowed by a length M rectangular window, starting at time
index n:

sn(m) = s(n+m)w(m) (8.39)

where w(m) is a causal, rectangular window defined on the interval m ∈ [0,M − 1].

The above definition of sn(m) results in the prediction error en(m) = sn(m) −∑p
k=1 aksn(m− k) being nonzero over the range m ∈ [0,M − 1 + p]. Thus, the limit of

the summation would be [0,M−1+p]. The corresponding short-time covariance ψn(i, k)
has the identical limit of summation:

ψA
n (i, k) =

M+p−1∑
m=0

sn(m− i)sn(m− k) (1 ≤ i ≤ p, 0 ≤ k ≤ p) (8.40)

Since sn(m) is zero outside [0,M − 1] we can show that

ψA
n (i, k) =

M+p−1∑
m=0

sn(m− i)sn(m− k)

=
M+p−1−i∑

m=−i

sn(m)sn(m+ i− k)

=
M−1−(i−k)∑

m=0

sn(m)sn(m+ i− k)

(8.41)

Since the sample (unnormalized) autocorrelation of sn(m) is defined as

r̂n(k) =
+∞∑
−∞

sn(m)sn(m+ k) =
M−1−k∑

m=0

sn(m)sn(m+ k) (8.42)

we can see that ψA
n is indeed equal to the true sample autocorrelation of the rectangular-

windowed signal frame sn(m).

ψA
n = r̂n(|i− k|) (1 ≤ i ≤ p, 0 ≤ k ≤ p) (8.43)

(Note r̂n(k) = r̂n(−k) for real signals)

We thus have the following Wiener-Hopf equations (also called the normal equations)
for the autocorrelation method:

162 8 Linear prediction

p∑
k=1

akr̂n(|i− k|) = r̂n(i), i = 1, 2, . . . , p (8.44)

or, in matrix form,

r̂n(0) r̂n(1) r̂n(2) · · · r̂n(p− 1)
r̂n(1) r̂n(0) r̂n(1) · · · r̂n(p− 2)
r̂n(2) r̂n(1) r̂n(0) · · · r̂n(p− 3)

...
...

...
. . .

...
r̂n(p− 1) r̂n(p− 2) r̂n(p− 3) · · · r̂n(0)

a1

a2

a3

...
ap

=

r̂n(1)
r̂n(2)
r̂n(3)

...
r̂n(p)

(8.45)

Remarks:

• Edge effect on the prediction error

– The prediction error en(m) can be large at the beginning of the interval (0 ≤
m ≤ p − 1) because we are trying to predict sn(m) from some past samples
sn(m− k) that are not included in the windowed frame, and thus are zero from
our definition of sn(m)

– Likewise, the error can also be large at the end of the interval (M ≤ m ≤M+p−1)
because we are trying to predict out-of-frame samples (which are zero) from
samples that are nonzero

– Solution: We use a tapered windows (i.e. Hamming window) to make the samples
at the edge negligible

• The p × p matrix Rn is a symmetric Toeplitz matrix, i.e. all the element along a
given diagonal are equal, and it is symmetric. It is this a special property that allows
us to use efficient algorithms to solve the normal equations and obtain the predictor
coefficients {ak}. One of the most widely used algorithms for solving equations in-
volving a Toeplitz matrix is the Levinson-Durbin algorithm which will be discussed
in the next section

Listing 8.1. Matlab

M = 1000; p = 3 ;

a = [0 . 8 ; 0 . 1 ; 0 . 0 5] ;

randn (’ s t a t e ’ , 0)
e = randn (M, 1) ;

s = f i l t e r (1 , [1 ; −a] , e) ;

subplot (2 , 1 , 1) p lo t (s) ;
subplot (2 , 1 , 2) p lo t (e)

r = ze ro s (p+1, 1) ;
f o r t = 0 : p

8.4 Computation of the LPC parameters 163

f o r m = 0 :M−1−t
r (t+1) = r (t+1) + s (m+1)∗ s (m+t +1);
end

end

% th i s i s equ iv e l en t to
% [r2] = xcorr (s , p) ;
% r = r2 (p+1:end) ;

R = t o e p l i t z (r (1 : p)) ;
a e s t = Rˆ(−1)∗ r (2 : p+1);

% th i s i s equ iva l en t to
% a e s t = l ev in son (r , p) ;
% a e s t = −a e s t (2 : end) ;

e r e s = f i l t e r ([1 ; −a e s t] , 1 , s) ;
var (e r e s)

Levinson-Durbin algorithm

For the autocorrelation method, the normal equation for obtaining the predictor coeffi-
cients is

r̂n(0) r̂n(1) r̂n(2) · · · r̂n(p− 1)
r̂n(1) r̂n(0) r̂n(1) · · · r̂n(p− 2)
r̂n(2) r̂n(1) r̂n(0) · · · r̂n(p− 3)

...
...

...
. . .

...
r̂n(p− 1) r̂n(p− 2) r̂n(p− 3) · · · r̂n(0)

a1

a2

a3

...
ap

=

r̂n(1)
r̂n(2)
r̂n(3)

...
r̂n(p)

(8.46)

By exploiting the Toeplitz nature of the matrix, we can devise a recursive algorithm
for solving the equation. One of the most popular procedures is the Levinson-Durbin
algorithm.

The objective of the algorithm is to find the LP (linear predictor) coefficients
a
(i)
1 , a

(i)
2 , . . . , a

(i)
p and the corresponding predictor error variance Ei

n recursively, for
i = 1, 2, . . . , p.

For i = 1, 2, . . . , p, we carry out the following recursion:

1. Initialization
E(0) = r̂(0) (8.47)

2. Compute ’partial correlation’ (PARCOR) coefficients

ki =

r̂(i)− i−1∑
j=1

ai−1
j r̂(i− j)

 /E(i−1), 1 ≤ i ≤ p (8.48)

164 8 Linear prediction

3. Calculate the predictor coefficients for order i

a
(i)
i = ki (8.49)

a
(i)
j = a

(i−1)
j − kia

(i−1)
i−j , 1 ≤ j ≤ i− 1 (8.50)

4. Update the predictor error

E(i) = (1− k2
i)E(i−1) (8.51)

5. Obtain the final solution
aj = a

(p)
j (8.52)

Remarks:

• In carrying out the recursion, the LP coefficients and the corresponding prediction
error for all orders less than p are automatically obtained

a
(i)
j (j-th predictor coefficient for prediction order i) (8.53)

E(i) (Optimal prediction error for prediction order i) (8.54)

• The ki’s are called PARCOR coefficients. The name PARCOR stems from the word
’partial correlation’. PARCOR coefficients have been studied extensively in the con-
text of lattice filters. It can be shown that the whitening filter A(z) can be constructed
by cascading single lattice structures with coefficients equal to −ki as shown in the
figure below.

• Recall that A(z) has to have all roots inside the unit circle in order for the shaping
filter H(z) to be stable. There is a necessary and sufficient condition for stability in
terms of PARCOR coefficients

|ki| ≤ 1, ∀i⇐⇒ H(z) is stable (8.55)

• It can be shown that ki’s obtained using the Levinson-Durbin algorithm always have
magnitude less or equal to unity, guaranteeing the stability of the shaping filter.

• The following conditions on the ki’s give more insight into the problem of prediction:

1. 0 < |ki| < 1: the error will always decrease as we increase the prediction order
from i− 1 to i, since E(i) = (a− k2

i)E(i−1) < E(i−1)

8.4 Computation of the LPC parameters 165

Fig. 8.3. Lattice filter implementation of linear prediction

2. ki = ±1: In this case, E(i) = 0. This happens when the signal is fully determinis-
tic, i.e. all the samples can be expressed exactly as a linear combination of past
i samples

3. ki = 0 : E(i) = E(i−1), which implies that there is no benefit in terms of reducing
the error by increasing the prediction order from i− 1 to i

Listing 8.2. Matlab

M = 100000; p = 6 ;

a = [0 . 8 ; 0 . 1 ; 0 . 0 5] ;

randn (’ s t a t e ’ , 0) e = randn (M, 1) ;

s = f i l t e r (1 , [1 ; −a] , e) ;

r = xcorr (s , p) ;
r = r (p+1:end) ;

% what f o l l ow s i s equ iva l en t to
% [A,E,K] = LEVINSON(r , i)
% f o r i = 1 : p

E est = ze ro s (p+1, 1) ;
k e s t = ze ro s (p , 1) ;
a e s t = ze ro s (p , p) ;

E est (1) = r (1) ;

f o r i = 1 : p

temp = 0 ;
f o r j = 1 : i − 1

temp = temp + a e s t (j , i − 1)∗ r (i − j + 1) ;
end
k e s t (i) = (r (i + 1) − temp)/ E est (i) ;

a e s t (i , i) = k e s t (i) ;

f o r j =1: i−1
a e s t (j , i) = a e s t (j , i − 1) − k e s t (i)∗ a e s t (i−j , i −1);

end

E est (i + 1) = (1 − k e s t (i)ˆ2)∗ E est (i) ;

166 8 Linear prediction

end

p lo t (E est (2 : end))

8.5 Frequency domain interpretation of LPC analysis

LPC analysis is basically a correlation type of analysis which can be approached ei-
ther from the time or from the frequency domain. We can see this by examining the
autocorrelation theorem:

x ∗ x←→ |X|2 (8.56)

Since the solution of the normal equations depends on the autocorrelation r(k) of the
signal (in the case of autocorrelation method) we see that the solution is also a function
of the power spectrum of the signal.

Given the error in the time domain:

e(n) = s(n)− ŝ(n) = s(n)−
p∑

k=1

aks(n− k) (8.57)

Applying the DTFT to the previous equation gives us the frequency domain represen-
tation of the error signal e(n)

E(ejω) =

[
1−

p∑
k=1

ake
−jωk

]
S(ejω) = A(ejω)S(ejω) (8.58)

Since the energy of the prediction error can be expressed in the time domain as

En =
M−1+p∑

m=0

e2n(m) =
+∞∑

m=−∞
e2n(m) (8.59)

we can express the above in the frequency domain using Parseval’s Theorem:

En =
1
2π

∫ +π

−π

|En(ejω)|2dω =
1
2π

∫ +π

−π

|Sn(ejω)|2|An(ejω)|2dω (8.60)

but since
H(ejω) =

1
A(ejω)

(8.61)

we can express the previous equation as

En =
1
2π

∫ +π

−π

|Sn(ejω)|2

|Hn(ejω)|2
dω (8.62)

8.5 Frequency domain interpretation of LPC analysis 167

Since the integrand is positive, we conclude the following:

min
ai

En ⇐⇒ min
ai

|Sn(ejω)|2

|Hn(ejω)|2
, ∀ω (8.63)

Perfect Reconstruction of the Power Spectrum

We saw earlier that in the case of infinite memory LP, where p =∞, the power spectrum
of the signal can be exactly reconstructed from the shaping filter H(z) and the error
variance Dp = G2. This implies that, as p −→ ∞, we can approximate the power
spectrum of the signal with arbitrarily small error using the all-pole shaping filter H(z):

lim
p→∞

|Ŝn(ejω)|2 = |Sn(ejω)|2 (8.64)

where Ŝn(ejω) = GHn(ejω) is the LPC spectrum, and Sn(ejω) is the true spectrum of
the signal (Sn(ejω) is the DTFT of the length-M signal sn(m). As such, with respect
to Chapter 7, |Sn(ejω)|2 is a unnormalized periodogram estimate of the true power
spectrum φs(ω)).

Power Spectral Matching properties of LPC

As the prediction order p increases, we saw earlier that the resulting energy or the pre-
diction error En monotonically decreases. This implies that as we increase the prediction
order, the LPC power spectrum |Ŝn(ejω)|2 will try to match the signal power spectrum
|Sn(ejω)|2 more closely. Figure 8.4 shows a comparison between the log magnitude of
the LPC spectrum and that of the speech spectrum for a vowel segment. with various
orders of prediction (p = 4, 8, 16, 32, 64, 128)

As LPC tries to minimize |Sn(ejω)|2
|Hn(ejω)|2 for ω ∈ [−π,+π] in the integral, there exists an

interesting discrepancy in carrying out the minimization of the integral

• Region 1: |Sn(ejω)| > |Hn(ejω)|

This corresponds to the region where the magnitude of the signal spectrum is large.
In this case we see that

|Sn(ejω)|
|Hn(ejω)|

> 1 (8.65)

implying that the integrand contributing to the error integral is relatively large
(greater than 1).

168 8 Linear prediction

Fig. 8.4. LPC spectral matching for p = 4, 8, 16, 32, 64, 128

• Region 2: |Sn(ejω)| < |Hn(ejω)|

This corresponds to the region where the magnitude of the signal spectrum is small.
In this case we see that

|Sn(ejω)|
|Hn(ejω)|

< 1 (8.66)

implying that the integrand contributing to the error integral is relatively small (less
than 1)

8.5 Frequency domain interpretation of LPC analysis 169

From the above argument, it is clear that the LPC spectrum matches the signal
spectrum much more closely in region 1 (near the spectrum peaks) than in region 2
(near spectral valleys) because integrands in region 1 contribute more to the total error
than those in region 2.

Thus, the LPC spectrum can be considered to be a good spectral envelope esti-
mator since it puts more emphasis on tracking peaks than tracking valleys. Figure 8.4
beautifully illustrates the peak tracking capabilities of the LPC.

Of course, as we increase the order p the approximation to the valleys is going to
improve as well as for the peaks since the total error becomes smaller.

Smoothness as a function of prediction order

Now let us consider the effects of prediction order p on the properties of the LPC
spectrum. We can see from Figure 8.4 that as we increase the order, the LPC spectrum
tries to capture more closely the fine structure of the signal spectrum, and thus becomes
less smooth.

Thus, the prediction order p can serve as a control parameter for determining the
smoothness of the LPC spectrum. If our objective is to capture the spectral envelope of
the spectrum and not the fine structure, then it is essential that we choose an appropriate
value of p. If p is too large, the LPC spectrum would too closely match the spectrum
and would not be smooth. If p is too small, the necessary peaks (i.e. formants) of the
envelope may not be captured.

A good rule of thumb for speech is to use fs/1000 ≤ p ≤ fs/1000 + 4, where fs is
the sampling rate in Hz. Thus, for example, if the sampling rate is 16kHz, then using
16 ≤ p ≤ 20 would be appropriate.

Listing 8.3. Matlab

load mtlb Nf f t = 2000;
s = mtlb (701 :701 + Nf f t) ;

phi p = (1/ Nf f t)∗ abs (f f t (s , Nf f t)) . ˆ 2 ;
phi p (1 : Nf f t /2) ;
w = 2∗ pi ∗ [0 : Nfft −1]/ Nf f t ;

p = 20 ;

r = xcorr (s , p) ;
r = r (p+1:end) ;

[a , e] = l ev in son (r , p) ;
e = e/ Nf f t ;

H = f r eq z (1 , a , w) ;
p lo t (w, 10∗ log10 (phi p)) ;
hold on p lo t (w, 10∗ log10 (e∗abs (H) . ˆ 2) , ’ r ’ , ’ L i n e W i d t h ’ , 2) ;
ax i s ([0 p i −60 2 0]) ;
hold o f f

170 8 Linear prediction

Frequency selective linear prediction

We saw in the previous section that the prediction order p can be adjusted to control
the accuracy and the smoothness of the LPC spectrum. In some cases, it would be nice
to perform separate LPC analysis for a selected partition of the spectrum.

Example: For voiced speech, such as vowels, we are generally interested in the region
from 0 to 4kHz. For unvoiced sounds, such as fricatives, the region from 4 to 8kHz is
important.

Motivation: Using frequency selective linear prediction, the spectrum from 0 to 4
kHz can be modeled by a predictor of order p1, while the region from 4 to 8 kHz can be
modeled by a different predictor of order p2. In most of the cases, we want a smoother
fit (smaller p) in the higher octaves.

To model only the region from f = fA to f = fB , we perform the following:

1. Map to a normalized frequency:

f = fA =⇒ f ′ = 0 (8.67)

f = fB =⇒ f ′ = ω′/2π = 0.5 (8.68)

2. Obtain the new autocorrelation coefficients by IDFT:

r̂′(n) =
1
2π

∫ +π

−π

|Sn(ejω′
)|2ejω′

dω′ (8.69)

3. Solve the new set of normal equations using {R′(k)} to get the predictor coefficients
for that particular spectral region.

Figure 8.5 illustrates the method of frequency selective linear prediction. The signal
is a vowel segment used in Figure 8.4 sampled at 16 kHz. The region from 0 to 4 kHz
is modeled by a 16-th order predictor (p1 = 16). while the region from 4 to 8 kHz is
modeled by a 4th-order predictor (p2 = 4)

Note that at the boundary between the two regions (f = 4 kHz) there is a disconti-
nuity. This arises from the fact that there is no continuity constraint for the boundary
conditions.

8.6 Applications of LPC 171

Fig. 8.5. Frequency selective linear prediction of a vowel

8.6 Applications of LPC

1. Speech Coding/Synthesis

We can devise a model of speech production where e(n) is the excitation source at
the glottis, and H(z) represents the transfer function of the vocal tract. Moreover,
we can encode the LPC parameters to achieve data compression

2. Pitch prediction

We can devise an optimal predictor that predicts the current sample from the past
value one pitch period earlier

ŝ(n) = βs(n− P) (8.70)

where P is the pitch period. The goal is to minimize

E(β, P) =
∑

n

[s(n)− βs(n− P)]2 (8.71)

By differentiating, we can get the optimal pitch value P along with the optimal pre-
dictor coefficient β. This method is used in CELP (Coded-Excited Linear Prediction)
speech coders.

It is also straightforward to extend the above idea, and predict s(n) from a group
of samples centered one period in the past

ŝ(n) = β−L
2
s(n− P − L

2
) + · · ·+ β0s(n− P) + · · ·+ βL

2
s(n− P +

L

2
) (8.72)

172 8 Linear prediction

3. Cross Synthesis in Computer Music - Talking Instruments

We may feed any sound (typically that of a musical instrument) into the shaping
(synthesis) filter H(z) obtained from LPC analysis of a speech segment (usually
vowels). Then, the musical signal input acts as a periodic excitation source e(n) to
the shaping filter H(z), and thus the output spectrum will possess vocal formant
structure as well as the harmonic and textural qualities of the musical sound.

4. Spectral Envelope Estimation

References

• Smith, J.O., Lecture notes,

http://www-ccrma.stanford.edu/~jos/

9

Wiener filtering

9.1 Problem formulation

General Wiener filtering problem: design an LTI filter f(n) that minimizes the expected
value of E[|e(n)|2]

f(n)
+

+ -

+s(n)

w(n) d(n)

y(n) e(n)x(n)

(noise) (reference signal)

Fig. 9.1. Wiener filtering.

Examples:

• d(n) = s(n): estimation problem (noise removal);

• d(n) = s(n+m), m > 0, prediction problem (stock market prediction, LPC, DPCM
coding);

• d(n) = s(n−m), m > 0: ”smoothing” problem.

Assumptions:

• x(n), s(n), w(n) are WSS random sequences

• x(n), d(n) are jointly WSS, i.e. E[x(n)d∗(n−m)] depends only on m

Constraints:

• f(n) is usually, but not always, constrained to be causal.

174 9 Wiener filtering

9.2 Wiener-Hopf equations

Goal: minimize the mean-square error (MSE)

ε = E[(d(n)− y(n))2] (9.1)

Expanding this expression gives

ε = E[(d(n)− y(n))2]

= E[d(n)d∗(n)]−
∑

k

f∗(k)E[d(n)x∗(n− k)]−
∑

k

f(k)E[d∗(n)x(n− k)]+

+
∑

k

∑
m

f(m)f∗(k)E[x(n−m)x∗(n− k)] (9.2)

Hence

ε = rd(0)− 2<

{∑
k

f∗(k)rdx(k)

}
+
∑

k

∑
m

f(m)f∗(k)rx(k −m) (9.3)

This is a real-valued quadratic function of the possibly complex variables f(i) for all i.
This suggests that by taking the partial derivative of ε with respect to each f(i), and
setting this to zero, we can find the values that minimize ε. Note that ε is a real-valued
quadratic function of the real and imaginary parts fR(i) and fI(i) of f(i). Hence, we
can take the partial derivative with respect to each of these real-valued variables and set
those to zero. The values of f(i) that make the partial derivatives zero yield a minimum
ε is the function is unimodal. We assume for now that it is.

Instead of setting the partial derivatives to zero, we can equivalently set the following
complex gradients to zero,

∇f(i)ε =
1
2

(
∂

∂fR(i)
− j ∂

∂fI(i)

)
ε = 0 (9.4)

and
∇f∗(i)ε =

1
2

(
∂

∂fR(i)
+ j

∂

∂fI(i)

)
ε = 0 (9.5)

The equivalence follows from the observation that

∇f∗(i)ε+∇f(i)ε =
∂ε

∂fR(i)
(9.6)

and
∇f∗(i)ε−∇f(i)ε = j

∂ε

∂fI(i)
(9.7)

With our definition of the complex gradient, it is easy to verify that

9.2 Wiener-Hopf equations 175

∇ff
∗ = 0 ∇ff = 1 ∇fff

∗ = f∗ (9.8)

and
∇f∗f

∗ = 1 ∇f∗f = 0 ∇f∗ff
∗ = f (9.9)

i.e. ∇ff = ∇f (fR + jfI) = 1
2 + 1

2 = 1.

Using these we get

∇f∗(i)ε = −rdx(i) +
∑

k

f(k)rx(i− k) (9.10)

It is easy to show that (∇f∗(i)ε)∗ = ∇f ε (using conjugate symmetry of rx(m)), sot it
is sufficient to set only one of the two gradients to zero. Setting ∇f∗(i)ε = 0 we get the
Wiener-Hopf equations:

∑
k

f(k)rx(i− k) = rdx(i) ∀i (9.11)

A solution to these equations will minimize ε. We can easily modify these equations to
constrain the filter f(n) to be causal by just modifying the limits on the summation.

∞∑
k=0

f(k)rx(i− k) = rdx(i) ∀i ≥ 0 (9.12)

Some examples

• Suppose d(n) = x(n). Then rdx(i) = rx(i). The Wiener-Hopf equations are satisfied
by

f(n) = δ(n) (9.13)

δ(n)
-

+

d(n)

y(n) e(n)x(n)

Fig. 9.2. Wiener filtering. d(n) = x(n)

176 9 Wiener filtering

f(n)
+

+ -

+s(n)

w(n) d(n)

y(n) e(n)x(n)

Fig. 9.3. Wiener filtering. d(n) = s(n)

• Suppose d(n) = s(n) = x(n) − w(n), where w(n) is white and independent of x(n)
(a very strange situation). Again, rdx = rx(i), so the solution is the same.

Because x(n) is independent of the noise w(n), there is nothing the filter can do to
remove it. So the solution is the same as before. But a more realistic example would
be for w(n) to be independent of s(n).

• Suppose x(n) is white, i.e. rx(k) = σ2δ(k). Then the Wiener-Hopf equations are
satisfied by

f(n) =
rdx(n)
σ2

u(n) (9.14)

where u(n) is the unit step function (so this filter is causal). Knowing the joint
statistics of x(n) and d(n), we can find the MMSE filter that estimates d(n) from
x(n). The solution is easy when x(n) is white. For other situations, we can use a
whitening filter to construct a general solution.

9.3 Non-causal Wiener filter solution

Equation (9.11), which has no causality constraint on the Wiener filter, can be written

f(i) ∗ rx(i) = rdx(i) (9.15)

Taking the z transform and solving for F (z) we get

F (z) =
Sdx(z)
Sx(z)

(9.16)

Thus

F (ejω) =
Sdx(ejω)
Sx(ejω)

(9.17)

When s(n) = d(n) and rsw(m) = E[s(n)w∗(n − m)] = cδ(m) (i.e. w(n) and s(n) are
uncorrelated), therefore

F (ejω) =
Ss(ejω)

Ss(ejω) + Sw(ejω)
(9.18)

9.4 Causal Wiener filter solution 177

9.4 Causal Wiener filter solution

The causality constraint 9.12 complicates things considerably. Conceptually break the
filter into two parts

f’(n)
+

+ -

+s(n)

w(n) d(n)

y(n) e(n)x(n)
h(n) v(n)

f(n)

Fig. 9.4. Causal Wiener filtering.

where h(n) is the whitening filter for x(n), v(n) is the innovation process, and f ′(n)
is the Wiener filter designed for white input, i.e.

f ′(n) =
rdv(n)
σ2

v

u(n) (9.19)

Denote

[Rdv(z)]+ =
∞∑

k=0

rdv(k)z−k (9.20)

i.e. the z transform of the nonnegative side only. With this,

F ′(z) =
1
σ2

v

[Rdv(z)]+ (9.21)

A more convenient form would express F ′(z) as a function of Rdx(z), which is assumed
to be known.

Note that since

v(n) =
∞∑

k=0

h(k)x(n− k) (9.22)

rdv(m) = E[d(i)v∗(i−m)] =
∞∑

k=0

h∗(k)E[d(i)x∗(i−m−k)] =
∞∑

k=0

h∗(k)rdx(m+k) (9.23)

This relation can be written

rdv(−m) = h∗(m) ∗ rdx(−m) (9.24)

Taking the z transform on both sides

Rdv

(
1
z

)
= H∗(z∗)Rdx

(
1
z

)
(9.25)

178 9 Wiener filtering

or
Rdv (z) = H∗

(
1
z∗

)
Rdx(z)) (9.26)

Hence, the overall Wiener filter solution is

F (z) = H(z)F ′(z) =
1
σ2

v

H(z)
[
H∗(

1
z∗

)Rdx(z)
]
+

(9.27)

References

• Ed Lee, Lecture Notes, UC Berkeley,

\http://ptolemy.eecs.berkeley.edu/~eal/ee225a/Supplement.pdf

