
Chapter 2
Classical Signal Theory

2.1 Continuous Signal Definitions

We begin with a formal definition:

Definition 2.1 A continuous-time signal is a complex function of a real variable
s : R → C, where the domain R is the set of real numbers and the codomain C is
the set of complex numbers.

The signal will be denoted by s(t), t ∈ R, or simply by s(t). The independent
variable t is typically interpreted as time. From the historical viewpoint, continuous-
time signals (more briefly, continuous signals) represent the most important class,
and are the subject of several textbooks [1, 6, 8–25].

An important subclass of continuous signals is given by real signals, which can
be defined by the relationship

s(t) = s∗(t), (2.1)

where the asterisk denotes “complex conjugation”.
Another important subclass is given by periodic signals, characterized by the

relationship

s(t + Tp) = s(t), (2.2)

where the constant time Tp > 0 represents the period. Signals that do not satisfy
Condition (2.2) are called aperiodic.

2.1.1 Signal Symmetries

A signal s(t) is even (Fig. 2.1) if for any t

s(−t) = s(t), (2.3a)
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Fig. 2.1 Examples of even and odd signals

it is odd (Fig. 2.1) if

s(−t) = −s(t). (2.3b)

An arbitrary signal can be always decomposed into the sum of an even component
se(t) and an odd component so(t)

s(t) = se(t) + so(t), (2.4)

where

se(t) = 1

2

[
s(t) + s(−t)

]
, so(t) = 1

2

[
s(t) − s(−t)

]
. (2.4a)

A signal is causal (Fig. 2.2) if it is zero for negative t ,

s(t) = 0 for t < 0. (2.5)

A causal signal is neither even nor odd, but can be decomposed into an even and
an odd component, according to (2.4) to give se(t) = so(t) = 1

2 s(t) for t > 0 and
se(t) = −so(t) = 1

2 s(−t) for t < 0.1 We can link the even and odd components of a
causal signal by the relationships

so(t) = sgn(t)se(t), se(t) = sgn(t)so(t), (2.6)

where sgn(x) is the “signum” function

sgn(x) =

⎧
⎪⎨

⎪⎩

−1, for x < 0;
0, for x = 0;
+1, for x > 0.

(2.7)

1The above relations hold for t �= 0. For t = 0 we may have a discontinuity, as shown in Fig. 2.2.
The problem of the signal value at discontinuities will be discussed below (see (2.19)).
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Fig. 2.2 Decomposition of a
causal signal s(t) into the
even part se(t) and odd
part so(t)

Fig. 2.3 Illustration of a t0-shift of a signal

2.1.2 Time-Shift

Given a signal s(t) and a time value t0, the signal

st0(t) = s(t − t0) (2.8)

represents a shifted version of s(t), by the amount t0. If t0 > 0 the time-shift is called
a delay (Fig. 2.3), if t0 < 0 it is called an advance, that is, a negative delay.

It is worth noting that to introduce a delay, e.g., of 5 units, we have to write
s(t − 5) and not s(t + 5).

2.1.3 Area and Mean Value

The integral of a signal s(t), t ∈ R, extended over the whole domain R is called the
area of the signal

area(s) =
∫ +∞

−∞
s(t)dt. (2.9)
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Fig. 2.4 Signal with an extension limited to the interval [ts , Ts ]

The limit

ms = lim
T →∞

1

2T

∫ T

−T

s(t)dt (2.10)

is called the mean value. In the context of electrical circuits, ms is called direct
current component.

2.1.4 Energy and Power

The specific energy, or simply energy, is defined by

Es =
∫ +∞

−∞
∣∣s(t)

∣∣2 dt, (2.11)

and the (specific) power by the limit

Ps = lim
T →∞

1

2T

∫ T

−T

∣∣s(t)
∣∣2 dt. (2.12)

This terminology derives from the fact that, if s(t) represents a voltage or a current
applied to a unitary resistance, Es equals the physical energy (in joules), while Ps

equals the physical power (in watts) dissipated by the resistance.
If 0 < Es < ∞, then s(t) is a finite-energy signal, and if 0 < Ps < ∞ then s(t) is

a finite-power signal. Note that a finite-energy signal has Ps = 0 and a finite-power
signal has Es = ∞.

Typically, periodic signals have finite power and aperiodic signals have finite
energy. However, some aperiodic signals, such as the step function, turn out to be
finite-power signals.

2.1.5 Duration and Extension

A signal s(t) that is zero-valued outside of a finite interval [ts , Ts] is called of limited
duration and the measure of the interval is the duration of the signal. The interval
[ts , Ts] is the extension of the signal and gives more information than the duration,
because it indicates where the signal is significant (Fig. 2.4).
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Definition 2.2 A set e(s) such that

s(t) = 0, t /∈ e(s) (2.13)

is the extension of s(t) and its measure D(s) is the duration of s(t).

The above definition provides a basis for an obvious signal classification. If
e(s) = [ts , Ts] is a finite interval, the signal has a strictly-limited extension or is
strictly time-limited; if e(s) = (−∞, Ts] with Ts finite, the signal is upper time-
limited, etc. In particular, the extension of periodic signals is always unlimited,
e(s) = (−∞,+∞) = R, and the extension of causal signals is lower time-limited
with e(s) = [0,+∞).

Note that the above definitions are not stringent in the sense that duration and
extension are not unique; in general, it is convenient to refer to as the smallest ex-
tension and duration (see Chap. 4).

2.1.6 Discontinuous Signals

The class of continuous-time signals includes discontinuous functions. The unit step
function is a first example. In function theory, a function may be undefined at points
of discontinuity, but in Signal Theory it is customary to assign a precise value at
such a point. Specifically, if s(t) has a discontinuity point at t = t0, we assign the
average value (semi-value)

s(t0) = 1

2

[
s(t0−) + s(t0+)

]
, (2.14)

where s(t0−) and s(t0+) are the limits of s(t) when t0 is approached from the left
and the right, respectively.

The reason of this convention is that, at discontinuities, the inverse Fourier trans-
form converges to the semi-value.

2.2 Continuous Periodic Signals

Some of the general definitions given above for continuous-time signals hold for the
subclass of periodic signals. This is the case for even and odd symmetries. Other
definitions must be suitably modified.

It is worth stressing that in the condition for periodicity

s(t + Tp) = s(t), t ∈ R, (2.15)

the period Tp is not unique. In fact, if Tp satisfies the condition (2.15), then also
kTp with k integer, satisfies the same condition. The smallest positive value of Tp
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Fig. 2.5 Periodic repetition of an aperiodic signal with period Tp

will be called the minimum period, and a general positive value of Tp is a period of
the signal. We also note that a periodic signal is fully identified by its behavior in a
single period [t0, t0 +Tp), where t0 is arbitrary, since outside the period its behavior
can be derived from the periodicity condition.

Note that “period” is used in two senses, as the positive real quantity Tp as well
as an interval [t0, t0 + Tp).

Periodic Repetition Sometimes a periodic signal is expressed as the periodic rep-
etition of an aperiodic signal u(t), t ∈ R, namely (Fig. 2.5)

s(t) =
+∞∑

n=−∞
u(t − nTp)

Δ= repTp
u(t), (2.16)

where Tp is the repetition period.
Periodic repetition does not require that the signal u(t) be of limited-duration as

in Fig. 2.5. In general, for every t ∈ R, a periodic repetition is given as a sum of a
bilateral series (see Problem 2.8 for a periodic repetition in which the terms overlap,
and see also Sect. 6.10).

2.2.1 Area, Mean Value, Energy and Power Over a Period

For periodic signals, the area definition given in (2.9) is not useful and is replaced
by the area over a period

area(s) =
∫ t0+Tp

t0

s(t)dt. (2.17a)
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The mean value over a period is defined by

ms(Tp) = 1

Tp

∫ t0+Tp

t0

s(t)dt. (2.17b)

It can be shown that the mean value over a period equals the mean value defined
as a limit by (2.10). Moreover, the periodicity property assures that both defini-
tions (2.17a) and (2.17b) are independent of t0.

The definition of energy (2.11) is replaced by that of energy over a period

Es(Tp) =
∫ t0+Tp

t0

∣∣s(t)
∣∣2 dt. (2.18a)

The mean power over a period is defined by

Ps(Tp) = 1

Tp

Es(Tp) = 1

Tp

∫ t0+Tp

t0

∣∣s(t)
∣∣2 dt. (2.18b)

Note that the square root of Ps(Tp) is known as the root mean square (rms) value.

2.3 Examples of Continuous Signals

We introduce the first examples of continuous signals, mainly to illustrate the usage
of some functions, such as the step function and the Delta function.

2.3.1 Constant Signals

A constant signal has the form

s(t) = A,

where A is a complex constant. It is even, with finite power, Ps = |A|2, and with
mean value A. Constant signals may be regarded as a limit case of periodic signals
with an arbitrary period.

2.3.2 Sinusoidal and Exponential Signals

A sinusoidal signal (Fig. 2.6)

s(t) = A0 cos(ω0t + φ0) = A0 cos(2πf0t + φ0) = A0 cos

(
2π

t

T0
+ φ0

)
(2.19)
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Fig. 2.6 Sinusoidal signal

is characterized by its amplitude A0, angular frequency ω0 and phase φ0. Without
loss of generality, we can always assume A0 and ω0 positive. The angular frequency
ω0 is related to the frequency f0 by the relation ω0 = 2πf0. Sinusoidal signals are
periodic, with (minimum) period T0 = 1/f0, finite power, Ps = 1

2A2
0, and zero mean

value. The signal (2.19) can be expressed as

s(t) = A0 cosφ0 cosω0t − A0 sinφ0 sinω0t,

which represents the decomposition into even and odd parts. By means of the very
important Euler’s formulas,

cosx = eix + e−ix

2
, sinx = eix − e−ix

2i
, (2.20)

a sinusoidal signal can also be decomposed into a sum of two exponential signals

s(t) = A0 cos(ω0t + φ0) = 1

2
A0ei(ω0t+φ0) + 1

2
A0e−i(ω0t+φ0). (2.21)

Furthermore, it can be written as the real part of an exponential signal

s(t) = �Aeiω0t , A = A0eiφ0 .

The exponential signal has the general form Aept , where p is a complex constant.
A particular relevance has the exponential signal with p imaginary, that is,

s(t) = Aeiω0t = Aei2πf0t .

This signal is illustrated in Fig. 2.7. It has finite power Ps = |A|2 and (minimum)
period 1/|f0|. While for sinusoidal signals the frequency is commonly assumed
to be positive, for exponential signals the frequencies may be negative, as well as
positive.

Notation As a rule, a real amplitude will be denoted by A0, and a complex ampli-
tude by A. In general, we suppose A0 > 0.
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Fig. 2.7 The exponential
signal and its sine and cosine
projections

Fig. 2.8 Step signal of
amplitude A0 applied at the
instant t0

2.3.3 Step Signals

A step signal has the form (Fig. 2.8)

s(t) = A01(t − t0),

where 1(x) denotes the unit step function

1(x) =
{

0, for x < 0,

1, for x > 0.
(2.22)

It is aperiodic, with finite power 1
2A2

0 and mean value 1
2A0. Note that, by the con-

ventions on discontinuities, 1(0) = 1
2 and s(t0) = 1

2A0.
The following decomposition

A01(t − t0) = 1

2
A0 + 1

2
A0 sgn(t − t0), (2.23)

is worth noticing, where sgn(x) is the signum function, 1
2A0 is the mean value and

the last term has zero mean value.
The unit step function allows writing the causal version of a given signal s(t) as

sc(t) = 1(t)s(t),
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Fig. 2.9 The rect(x) function and the rectangular impulse of duration D, amplitude A0 and central
instant t0

which coincides with s(t) for t > 0 and is zero for t < 0. For instance, the causal ver-
sion of the linear signal s(t) = βt , with slope β , is the ramp signal sc(t) = 1(t)βt .

A notable example of a causal signal is the causal exponential

sc(t) = 1(t)ep0t (2.24)

where p0 = σ0 + iω0 is a complex constant. If �p0 = σ0 < 0, this signal approaches
zero as t → +∞, and has energy 1/|2σ0|; if σ0 > 0 the signal diverges and has
infinite energy.

2.3.4 Rectangular and Triangular Pulses

Using the definition

rect(x) =
{

1, for |x| < 1
2 ,

0, for |x| > 1
2 ,

(2.25)

the pulse2 centered at t0 with duration D and amplitude A0 (Fig. 2.9) can be written
in the form

r(t) = A0 rect

(
t − t0

D

)
. (2.26)

Alternatively, we can express the pulse (2.26) as the difference between two step
signals, namely

A0 rect

(
t − t0

D

)
= A01(t − t1) − A01(t − t2), (2.27)

where t1 = t0 − 1
2D and t2 = t0 + 1

2D. The pulse (2.26) has finite extension, e(r) =
[t1, t2], finite energy, Er = A2

0D, and finite area, area(r) = A0D.

2Strictly speaking, a pulse denotes a signal of “short” duration, but more generally this term is
synonymous with aperiodic signal.
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Sometimes we shall use the causal rect function

rect+(x) = rect

(
x − 1

2

)
=

{
1, for 0 < x < 1;
0, otherwise.

(2.28)

The rect functions are useful for writing concisely the truncated versions of a given
signal s(t) as s(t) rect[(t − t0)D] or s(t) rect+[(t − t0)/D], which have extensions
(t0 − 1

2D, t0 + 1
2D) and (t0, t0 + D), respectively.

A triangular pulse is introduced by the function

triang(x) =
{

1 − |x| for |x| < 1;
0 for |x| > 1.

(2.29)

Note that triang(x) = rect(x/2)(1 − |x|). The pulse A0 triang(t/D) has extension
(−D,D) and amplitude A0.

2.3.5 Impulses

Among the continuous signals, a fundamental role is played by the delta function
or Dirac function δ(t). From a rigorously mathematical point of view, δ(t) is not an
ordinary function and should be introduced as a generalized function in the frame-
work of distribution theory [4] or of the measure theory [3].

On the other hand, for all practical purposes, a simple heuristic definition is ade-
quate. Namely, δ(t) is assumed to vanish for t �= 0 and satisfy the sifting property

∫ ∞

−∞
δ(t)s(t)dt = s(0).

In particular, since
∫ ∞

−∞
δ(t)dt = 1,

δ(t) may be interpreted as a signal with zero duration and unit area.
Intuitively, the Dirac function may be interpreted as a limit of a sequence of

suitably chosen ordinary functions. For instance,

rD(t) = 1

D
rect

(
t

D

)
, (2.30)

with D > 0, is a signal having unit area and duration D. As D tends to 0, the
duration of rD vanishes while the area maintains the unit value. Even though the
limit diverges for t = 0, we find it useful to set

δ(t) = lim
D→0

rD(t).
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Note that

lim
D→0

∫ ∞

−∞
rD(t)s(t)dt = lim

D→0

1

D

∫ D/2

−D/2
s(t)dt = s(0),

so that the value of s(t) at the origin is sifted. In conclusion, the sifting property
applied to a signal s(t) may be interpreted as a convenient shorthand for the follow-
ing operations: (i) integrating the signal multiplied by rD(t), and (ii) evaluating the
limit of the integral as D → 0. Note that these limit considerations imply that

δ(t) = 0 for t �= 0. (2.31)

The choice of a rectangular pulse in the heuristic derivation is a mere mathemat-
ical convenience. Alternatively [1], we could choose a unitary area pulse r(t), e.g.,
a triangular pulse or a Gaussian pulse, define rD(t) = (1/D)r(t/D) and apply the
above operations.

In practice, we handle the delta function as an ordinary function, and indeed, it
is called the delta function or Dirac function. For instance, we get

∫ ∞

−∞
s(t)δ(t − t0)dt =

∫ ∞

−∞
s(t + t0)δ(t)dt = s(t0). (2.32)

Moreover,
∫ ∞

−∞
δ(−t)s(t)dt =

∫ ∞

−∞
δ(t)s(−t)dt = s(0) =

∫ ∞

−∞
δ(t)s(t)dt,

and δ(t) is considered an even function. Then, (2.32) can be written in the alternative
form

s(t) =
∫ +∞

−∞
s(u)δ(t − u)du. (2.33)

Of course, the delta function has singular properties. For instance, it allows writ-
ing a signal of zero duration and with finite area α as

αδ(t − t0),

where t0 is the application instant. In fact, from (2.31) it follows that

αδ(t − t0) = 0 for t �= t0,

so that the duration is zero and the area is
∫ +∞

−∞
αδ(t − t0)dt = α

∫ +∞

−∞
δ(t − t0)dt = α.

We shall use the graphical convention to represent α δ(t − t0) by a vertical arrow
of length α applied at t = t0 (Fig. 2.10), where the length of the arrow does not
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Fig. 2.10 Graphical
representation of the impulse
of area α applied at the
instant t0

represent the amplitude of the impulse but its area. In the Unified Theory, the delta
function will be called an impulse.

We note that the square of the delta function is undefined (even in distribution
theory), so that it makes no sense to talk of energy and power of the delta function.
Finally, we note that the formalism of the delta function allows writing the derivative
of a discontinuous signal, for example,

d1(t)

dt
= δ(t). (2.34)

More generally, for a discontinuity at t0 the derivative of a signal has an impulse of
area s(t0+) − s(t0−) at t0.

In the framework of distribution theory, also derivatives of any order of the delta
function are defined, with useful applications in Signal and Control Theory. We
confine us to the first derivative, in symbols

δ′(t) = dδ(t)

dt
.

Formally, applying the integration by parts, we obtain the derivative sifting property

∫ ∞

−∞
δ′(t)s(t)dt = δ(t)s(t)|∞−∞ −

∫ ∞

−∞
δ(t)s′(t)dt = −s′(0).

We may give a heuristic interpretation also to δ′(t) as

δ′(t) = lim
D→0

uD(t)

with

uD(t) = 1

D2

[
rect

(
t + D/2

D

)
− rect

(
t − D/2

D

)]
.

Indeed, it can be shown that, under mild conditions, limD→0
∫ ∞
−∞ uD(t)s(t)dt =

s′(0).
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Fig. 2.11 The sinc(x) function and its periodic version sincN(x) shown for N = 5 and N = 6

2.3.6 Sinc Pulses

Sinc pulses have the form

A0 sinc

(
t − t0

T

)
, (2.35)

where (Fig. 2.11)

sinc(x) = sinπx

πx
(2.36)

and the value at x = 0 is sinc(0) = 1. The pulse (2.35) has a maximum value A0 at
t = t0, it is zero at t0 +nT , with n = ±1,±2, . . . . It is even-symmetric about t0 with
finite energy A2

0T and finite area A0T .
The sinc function has the periodic version (Fig. 2.11)

sincN(x) = 1

N

sinπx

sin π
N

x
, (2.37)
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where N is a natural number. This function has period N for N odd and period 2N

for N even. Hence, the signal

s(t) = A0 sincN

(
t − t0

T

)
(2.37a)

has period NT for N odd and 2NT for N even, and similarly to the aperiodic sinc
pulse (2.35) has equally spaced zeros, at intervals of length T .

Historical Note The functions sinc and rect were introduced by Woodward [7], who
also introduced the symbol rep for periodic repetition. The definition (2.37) of the
periodic sinc is new.

2.4 Convolution for Continuous Signals

Convolution is one of the most important operations of Signal and System Theory.
It is now introduced for continuous aperiodic signals, and later for periodic signals.

2.4.1 Definition and Interpretation

Given two continuous signals x(t) and y(t), their convolution defines a new signal
s(t) according to

s(t) =
∫ +∞

−∞
x(u)y(t − u)du. (2.38)

This is concisely denoted by s = x ∗ y or, more explicitly, by s(t) = x ∗ y(t) to
indicate the convolution evaluated at time t . The signals x(t) and y(t) are called the
factors of the convolution.

The interpretation of convolution is depicted in Fig. 2.12. We start with the two
signals x(u) and y(u), expressed as functions of the time u. The second signal is
then reversed to become z(u) = y(−u), and finally shifted by a chosen time t to
yield

zt (u) = z(u − t) = y
(−(u − t)

) = y(t − u),

so that (2.38) becomes

s(t) =
∫ +∞

−∞
x(u)zt (u)du. (2.38a)

In conclusion, to evaluate the convolution at the chosen time t , we multiply x(u) by
zt (u) and integrate the product.
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Fig. 2.12 Convolution interpretation: (a) signals to be convolved, (b) signals x(u) and
zt (u) = y(t − u), (c) product x(u) zt (u) for t fixed, (d) result of convolution

In this interpretation, based on (2.38), we hold the first signal while inverting and
shifting the second. However, with a change of variable v = t − u, we obtain the
alternative form

s(t) =
∫ +∞

−∞
x(t − u)y(u)du, (2.38b)

in which we hold the second signal and manipulate the first to reach the same result.

Notation In the notation x ∗ y(t), the argument t represents the instant at which the
convolution is evaluated; it does not represent the argument of the original signals.
The notation [x ∗ y](t), used by some authors [5], is clearer, though a little clumsy,
while the notation x(t) ∗ y(t) used by other authors [2] may be misleading, since it
suggests interpreting the result of convolution at t as depending only on the values
of the two signals at t .

Extension and Duration of the Convolution From the preceding interpretations,
it follows that if both convolution factors are time-limited, also the convolution it-
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self is time-limited. In fact, assuming that the factors have as extensions the finite
intervals

e(x) = [tx, Tx], e(y) = [ty, Ty],
then, the extension of z(u) = y(−u) is e(z) = [−Ty,−ty] and after the t-shifting

e(zt ) = [t − Ty, t − ty].
The extension of the integrand is given by the intersection of e(x) and e(zt ), so
that (2.38a) can be rewritten in the more specific form

s(t) =
∫

e(x)∩e(zt )

x(u)zt (u)du (2.38c)

where the t-dependence also appears in the integration interval. If the intersection is
empty, the integral is zero and s(t) = 0. This occurs whenever the intervals e(x) =
[tx, Tx] and e(zt ) = [t − Ty, t − ty] are disjoint, and it happens for t − ty < tx or
t − Ty > Tx , i.e., for t < tx + ty , or t > Tx + Ty . Then, the convolution extension is
given by the interval

e(x ∗ y) = [tx + ty, Tx + Ty]. (2.39)

In words, the infimum (supremum) of the convolution extension is the sum of the
infima (suprema) of the factor extensions. The above rule yields for the durations

D(x ∗ y) = D(x) + D(y) (2.39a)

so that the convolution duration is given by the sum of the durations of the two
factors.

Rule (2.39) is very useful in the convolution evaluation since it allows the knowl-
edge of the extension in advance. It holds even in the limit cases; for instance, if
tx = −∞, it establishes that the convolution is lower time-unlimited.

2.4.2 Convolution Properties

Commutativity We have seen that convolution operation is commutative

x ∗ y(t) = y ∗ x(t). (2.40a)

Area If we integrate with respect to t in definition (2.38), we find

∫ +∞

−∞
s(t)dt =

∫ +∞

−∞
x(t)dt

∫ +∞

−∞
y(t)dt. (2.40b)

Recalling that the integral from −∞ to +∞ is the area, we get

area(x ∗ y) = area(x) area(y). (2.40c)
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Time-Shifting By an appropriate variable changes, we can find that the convolu-
tion of the shifted signals x(t − t0x) and y(t − t0y) is given by

s(t − t0s) with t0s = t0x + t0y, (2.40d)

that is, the convolution is shifted by the sum of shifts on the factors.

Impulse The impulse has a central role in convolution. In fact, reconsider-
ing (2.33)

s(t) =
∫ +∞

−∞
s(u)δ(t − u)du (2.41a)

and comparing it with definition (2.38), we find that the convolution of an arbitrary
signal with the impulse δ(t) yields the signal itself

s(t) = s ∗ δ(t) = δ ∗ s(t). (2.41b)

As we shall see better in Chap. 4, this result states that the impulse is the unitary
element of the algebra of convolution.

2.4.3 Evaluation of Convolution and Examples

The explicit evaluation of a convolution may not be easy and must be appropriately
organized. The first step is a choice between the two alternatives

s(t) =
∫ +∞

−∞
x(u)y(t − u)du =

∫ +∞

−∞
y(u)x(t − u)du

and, whenever convenient, we can use the rules stated above. In particular, the rule
on the extension can be written more specifically in the forms (see (2.38c))

s(t) =
∫

et

x(u)y(t − u)du, et = [tx, Tx] ∩ [t − Ty, t − ty], (2.42a)

s(t) =
∫

et

x(t − u)y(u)du, et = [t − Tx, t − tx] ∩ [ty, Ty]. (2.42b)

Example 2.1 We want to evaluate the convolution of the rectangular pulses
(Fig. 2.13)

x(t) = A1 rect

(
t

4D

)
, y(t) = A2 rect

(
t

2D

)
.

Since e(x) = (−2D,2D) and e(y) = (−D,D) we know in advance that

e(s) = (−3D,3D)



2.4 Convolution for Continuous Signals 35

Fig. 2.13 Convolution s(t) = x ∗ y(t) of two rectangular pulses of duration 4D and 2D; the
trapezium amplitude is A12 = 2DA1A2

so we limit the evaluation to this interval.
Since the duration of the second pulse is less than the duration of the first one,

it is convenient to hold the first while operating on the second. Using (2.42a) and
considering that both the pulses are constant within their extensions, we find

s(t) =
∫

et

A1A2 du = A1A2 meas et

where et = (−2D,2D) ∩ (t − D, t + D). Then, we have to find the intersection et

for any t and the corresponding measure. The result is

et =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∅, if t < −3D or t > 3D;
(−3D, t), if − 3D < t < −D;
(t − D, t + D), if − D < t < D;
(t,3D), if D < t < 3D;

and then

s(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if t < −3D or t > 3D;
A1A2(t + 3D), if − 3D < t < −D;
A1A22D, if − D < t < D;
A1A2(3D − t), if D < t < 3D.

(2.43)

In conclusion, the convolution of the rectangular pulses has an isosceles trapezoidal
form, as illustrated in Fig. 2.13.

In (2.43), we have not specified the convolution values at the connection instants
t = ±D and t = ±3D. Reconsidering the evaluation details, we find that in the four
lines of (2.43) the open intervals can be replaced by closed intervals. Hence, the
convolution s(t) turns out to be a continuous function.

Example 2.2 We evaluate the convolution of the signals (Fig. 2.14)

x(t) = A0 rect

(
t

2D

)
, y(t) = 1(t).

Since e(x) = (−D,D) and e(y) = (0,+∞), it follows that e(x ∗ y) =
(−D,+∞). We note that in general the convolution of an arbitrary signal x(t)
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Fig. 2.14 Convolution s(t) = x ∗ y(t) of a rectangular pulse with the step signal

with the unit step signal 1(t) is given by the integral of x(t) from −∞ to t ,

s(t) =
∫ +∞

−∞
x(u)1(t − u)du =

∫ t

−∞
x(u)du,

as soon as we take into account that 1(t − u) = 0 for u < t .
In our specific case, we find

s(t) =

⎧
⎪⎨

⎪⎩

0, if t < −D;
A0(t + D), if − D < t < D;
A02D, if t > D,

which is similar to the step signal, but with a linear roll-off from −D to D.

Example 2.3 We evaluate the convolution of the signals

x(t) = A1 rect

(
t

2D

)
, y(t) = A2 cosω0t.

Since e(y) = (−∞,+∞), from the rule on extension it follows that also the convo-
lution has the infinite extension (−∞,+∞). Holding the second signal, we find

s(t) =
∫ +∞

−∞
y(u)x(t − u)du =

∫ t+D

t−D

A1A2 cosω0udu

= A1A2

ω0

[
sinω0(t + D) − sinω0(t − D)

]

= 2
A1A2

ω0
sinω0D cosω0t.

Hence, the convolution is a sinusoidal signal with the same frequency as y(t).

2.4.4 Convolution for Periodic Signals

The convolution defined by (2.38) is typically used for aperiodic signals, but one of
the signals to be convolved may be periodic. If this is the case, the convolution turns
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out to be periodic with the same period as the periodic factor. When both signals are
periodic, the integral in (2.38) may not exist and a specific definition must be issued.

The convolution of two periodic signals x(t) and y(t) with the same period Tp is
then defined as

x ∗ y(t)
Δ=

∫ t0+Tp

t0

x(u)y(t − u)du. (2.44)

where the integral is over an arbitrary period (t0, t0 + Tp). This form is sometimes
called the cyclic convolution and then the previous form the acyclic convolution.

We can easily check that the periodic signal s(t) = x ∗ y(t) is independent of t0
and has the same period Tp as the two factors. Moreover, the cyclic convolution has
the same properties as the acyclic convolution, provided that the results are inter-
preted within the class of periodic signals. For instance, the area rule (2.40c) still
holds provided that areas are interpreted as the integrals over a period (see (2.17a),
(2.17b)).

2.5 The Fourier Series

In this section, continuous-time signals are examined in the frequency domain. The
tool is given by the Fourier series for periodic signals and the Fourier integral for
aperiodic signals.

We recall that in 1822 Joseph Fourier proved that an arbitrary (real) function of
a real variable s(t), t ∈ R, having period Tp , can be expressed as the sum of a series
of sine and cosine functions with frequencies multiple of the fundamental frequency
F = 1/Tp , namely

s(t) = A0 +
∞∑

k=1

[Ak cos 2πkF t + Bk sin 2πkF t]. (2.45)

This is the Fourier series expansion, which represents a periodic function by means
of the coefficients Ak and Bk . In modern Signal Theory, the popular form of the
Fourier series is the expansion into exponentials, equivalent to the sine–cosine ex-
pansion, but more compact and tractable.

2.5.1 The Exponential Form of Fourier Series

A continuous signal s(t), t ∈ R, with period Tp , can be represented by the Fourier
series

s(t) =
∞∑

n=−∞
Snei2πnF t , F = 1

Tp

, (2.46a)
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where the Fourier coefficients Sn are given by

Sn = 1

Tp

∫ t0+Tp

t0

s(t)e−i2πnF t dt, n ∈ Z. (2.46b)

These relationships follow from the orthogonality of exponential functions,
namely

1

Tp

∫ t0+Tp

t0

ei2πnF te−i2πmFt dt = δmn (2.47)

where δmn is the Kronecker symbol (δmn = 1 for m = n and δmn = 0 for m �= n).
Hence, (2.46a) is an orthogonal function expansion of the given signal in an arbitrary
period (t0, t0 +Tp). It represents the signal s(t) as a sum of exponential components
with frequencies being multiples of the fundamental frequency

fn = nF, n = 0,±1,±2, . . . .

In the general case of a complex signal s(t), the coefficients Sn have no sym-
metries. When the signal s(t) is real, the coefficients have the Hermitian symmetry,
namely

S−n = S∗
n (2.48)

and the signal identification can be limited to the Fourier coefficients Sn with n ≥ 0.
If we let Sn = Rn + iXn, the Hermitian symmetry (2.48) yields the two conditions

R−n = Rn, X−n = −Xn,

which state that the real part is an even function (of the integer variable n) and the
imaginary part is an odd function. These symmetries are illustrated in Fig. 2.15.
The same symmetries hold respectively for the modulus and for the argument of the
Fourier coefficients of a real signal.

Continuing with real signals, from the exponential form (2.48) the Hermitian
symmetry allows obtaining the sine–cosine form (2.45) (where a real signal is tacitly
assumed)

s(t) = R0 + 2
∞∑

n=1

[Rn cos 2πnF t − Xn sin 2πnF t]. (2.49a)

We can also obtain a form with only cosine terms but with appropriate phases in
their arguments, namely

s(t) = S0 + 2
∞∑

n=1

|Sn| cos(2πnF t + argSn). (2.49b)
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Fig. 2.15 Representation of Fourier coefficients of a real periodic signal illustrated by real and
imaginary parts

Presence of Negative Frequencies In the exponential form, we find terms with
negative frequencies. It is worth explaining this assertion clearly. To be concrete, let
us assume that the periodic signal under consideration be the model of an electrical
voltage v(t). Since this signal is real, we can apply series expansion (2.49b), i.e.,

v(t) = V0 +
∞∑

n=1

Vn cos(2πnF t + ϕn)

where all terms have positive frequencies (the constant V0 can be regarded as a
term with zero frequency). These terms, with positive frequencies nF , have a direct
connection with the physical world and, indeed, they can be separated and measured
by a filter-bank.

The presence of negative frequencies, related to exponentials, is merely a math-
ematical artifact provided by Euler’s formulas (2.19), which yields

Vn cos(2πnF t + ϕn) = 1

2
Vneiϕnei2πnF t + 1

2
Vne−iϕne−i2πnF t .

2.5.2 Properties of the Fourier Series

Fourier series has several properties (or rules) which represent so many theorems
and will be considered systematically in Chap. 5 with the unified Fourier transform
(which gives the Fourier series as a particularization). Here, we consider only a few
of them.

• Let s(t) be a periodic signal and x(t) = s(t − t0) a shifted version. Then, the
relationship between the Fourier coefficients is

Xn = Sne−i2πnF t0 . (2.50)
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As a check, when t0 is a multiple of the period Tp = 1/F , we find x(t) = s(t),
and indeed (2.50) yields Xn = Sn.

• The mean value in a period is the zeroth coefficient

ms(Tp) = 1

Tp

∫ t0+Tp

t0

s(t)dt = S0.

• The power given by (2.12) can be obtained from the Fourier coefficients as fol-
lows (Parseval’s theorem)

Ps = 1

Tp

∫ t0+Tp

t0

∣∣s(t)
∣∣2 dt =

+∞∑

n=−∞
|Sn|2. (2.51)

In particular, for a real signal, considering the Hermitian symmetry (2.48), Parse-
val’s theorem becomes

Ps = S2
0 + 2

∞∑

n=1

|Sn|2. (2.51a)

2.5.3 Examples of Fourier Series Expansion

We consider a few examples. The related problems are:

1. Given a periodic signal s(t), evaluate its Fourier coefficients Sn, i.e., evaluate the
integral (2.46b) for any n;

2. Given the Fourier coefficients Sn, evaluate the sum of series (2.46a), to find s(t).

Problem 1 is often trivial, whereas the inverse problem 2 may be difficult.

Example 2.4 Let

s(t) = A0 cos(2πf0t + ϕ0)

with A0 and f0 positive. Letting F = f0 and using Euler’s formulas, we get

s(t) = 1

2
A0eiϕ0 ei2πF t + 1

2
A0e−iϕ0 e−i2πF t .

Then, comparison with (2.46a) (by the uniqueness of Fourier coefficients) yields:

S1 = 1

2
A0eiϕ0 , S−1 = 1

2
A0e−iϕ0 , Sn = 0 for |n| �= 1.

Example 2.5 A periodic signal consisting of equally-spaced rectangular pulses can
be written in the form

s(t) =
+∞∑

n=−∞
A0 rect

(
t − nTp

dTp

)
= A0 repTp

rect

(
t

dTp

)
, 0 < d ≤ 1
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where d is the pulse duration normalized to the period (d is called the duty cycle).
Considering that in the interval (− 1

2Tp, 1
2Tp) the signal s(t) is given by the zeroth

term of the periodic repetition,

s(t) = A0 rect

(
t

dTp

)
, −1

2
Tp < t <

1

2
Tp,

we get

Sn = 1

Tp

∫ 1
2 dTp

− 1
2 dTp

A0e−i2πnF t dt.

This integral can be expressed by the sinc function (2.36), namely

Sn = S0 sinc(nd), S0 = A0d. (2.52)

As a check, for d = 1 all the Fourier coefficients are zero for n �= 0, and indeed s(t)

becomes a constant signal.
As an opposite limit case, suppose that the duty cycle d tends to zero, but holding

the mean value at the fixed value S0 = A0d . Then, at the limit each rectangular pulse
becomes a delta function of area S0Tp , that is,

s(t) =
+∞∑

n=−∞
TpS0δ(t − nTp) = TpS0 repTp

δ(t).

Then, all the Fourier coefficients Sn are equal to S0. The interpretation is that a
“train” of delta functions has all the “harmonics” with the same amplitude S0. From
this result, follows the remarkable identity

+∞∑

n=−∞
ei2πnF t = Tp

+∞∑

n=−∞
δ(t − nTp), F = 1

Tp

. (2.53)

Example 2.6 We want to find the signal s(t) whose Fourier coefficients are given
by

Sn =
{

A0 for |n| ≤ n0;
0 for |n| > n0,

i.e., the signal that has only the first n0 harmonics with the same amplitude.
From (2.46a)a we get

s(t) = A0 + A0

n0∑

n=1

(
ei2πnF t + e−i2πnF t

) = A0 + 2A0

n0∑

n=1

cos 2πnF t.
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An alternative expression is obtained by letting z = ei2πF t and noticing that

n0∑

n=1

ei2πnF t =
n0∑

n=1

zn = z(1 − zn0)

1 − z
.

Hence

s(t) = A0

[
1 + z(1 − zn0)

1 − z
+ z−1(1 − z−n0)

1 − z−1

]

= A0
zn0+ 1

2 − z−(n0+ 1
2 )

z
1
2 − z− 1

2

= A0
sin 2π(n0 + 1

2 )F t

sin 2π 1
2F t

.

The last term compared with definition (2.37) of the periodic sinc can be written in
the form:

s(t) = A0N sincN(NF t), N = 2n0 + 1.

Thus, we have stated the following identity

1 + 2
n0∑

n=1

cos 2πnF t = N sincN(NF t), N = 2n0 + 1. (2.54)

2.6 The Fourier Transform

An aperiodic signal s(t), t ∈ R, can be represented by the Fourier integral

s(t) =
∫ +∞

−∞
S(f )ei2πf t df, t ∈ R, (2.55a)

where the function S(f ) is evaluated from the signal as

S(f ) =
∫ +∞

−∞
s(t)e−i2πf t dt, f ∈ R. (2.55b)

These relationships allow the passage from the time domain to the frequency
domain, and vice versa. The function S(f ) is the Fourier transform (FT) of the
signal s(t), and the signal s(t), when written in the form (2.55a), is the inverse
Fourier transform of S(f ). Concisely, we write S(f ) = F[s | f ] and s(t) = F−1[S |
t] where F and F−1 are the operators defined by (2.55a, 2.55b). We also use the
notation

s(t)
F−−−−−−→ S(f ), S(f )

F−1−−−−−−→ s(t).

The above relationships can be established heuristically with a limit considera-
tion from the Fourier series. With reference to (2.46a), (2.46b), we limit the given
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aperiodic signal to the interval (− 1
2Tp, 1

2Tp) and we repeat it periodically outside,
then we take the limit with Tp → ∞. From a mathematical viewpoint, the conditions
on the existence of the Fourier transform and its inverse are formulated in several
ways, often having no easy interpretation [2, 6]. A sufficient condition is that the
signal be absolutely integrable, i.e.,

∫ +∞

−∞
∣∣s(t)

∣∣dt < ∞,

but this condition is too much stringent for Signal Theory where a very broad class
of signals is involved, including “singular” signals as impulses, constant signals and
periodic signals.

2.6.1 Interpretation

In the Fourier series, a continuous-time periodic signal is represented by a discrete-
frequency function Sn = S(nF). In the FT, this is no more true and we find a sym-
metry between the time domain and the frequency domain, which are both contin-
uous. In (2.55a), a signal is represented as the sum of infinitely many exponential
functions of the form

[
S(f )df

]
ei2πf t , f ∈ R (2.56)

with frequency f and infinitesimal amplitude S(f )df .
In general, for a complex signal s(t) the FT S(f ) has no peculiar symmetries.

For a real signal, similarly to (2.48), we find that the Fourier transform has the
Hermitian symmetry

S(−f ) = S∗(f ), (2.57)

so that the portion of S(f ) for f ≥ 0 completely specifies the signal. Letting

S(f ) = R(f ) + iX(f ) = AS(f )eiβS(f ),

from (2.57) we find

R(f ) = R(−f ), X(f ) = −X(−f ), (2.57a)

which states that the real part of the FT is even and the imaginary part is odd. Anal-
ogously, we find for the modulus and the argument

AS(f ) = AS(−f ), βS(f ) = −βS(−f ). (2.57b)

These symmetries are illustrated in Fig. 2.16.
Continuing with the assumption of a real signal, the decomposition (2.55a) with

both positive and negative frequencies can be set into a form with cosinusoidal terms
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Fig. 2.16 Representation of the Fourier transform of a real signal s(t), t ∈ R, by real and imagi-
nary parts, and by modulus and argument

with positive frequencies. In fact, by pairing the exponential terms (2.56) at fre-
quency f with the terms at frequency −f , we get

[
S(f )df

]
ei2πf t + [

S(−f )df
]
e−i2πf t

= [
S(f )f

]
ei2πf t + [

S∗(f )df
]
e−i2πf t = 2�{[

S(f )df
]
ei2πf t

}

= 2
[
AS(f )df

]
cos

(
2πf t + βS(f )

)
, f > 0.

Hence, (2.55a) becomes

s(t) =
∫ ∞

0
2AS(f ) cos

(
2πf t + βS(f )

)
df. (2.58)

2.6.2 Properties of the Fourier Transform

The properties (or rules) of the FT will be seen in a unified form in Chap. 5 and in
a specific form for continuous-time signals in Chap. 9. Here, we see the main rules.
The formulation is simpler than with the Fourier series for the perfect symmetry
between time and frequency domains.

• The time-shifted version s(t − t0) of a signal s(t) gives the following FT pair

s(t − t0)
F−−−−−−→ S(f )e−i2πf t0 . (2.59a)

Symmetrically, the inverse FT of the frequency-shifted version S(f −f0) of S(f )

gives

S(f − f0)
F−1−−−−−−→ s(t)ei2πf0t . (2.59b)

• The convolution x ∗ y(t) becomes the product for the FTs

x ∗ y(t)
F−−−−−−→ X(f )Y (f ). (2.60a)
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Fig. 2.17 Symmetric signals and the corresponding Fourier transforms

Symmetrically, the products s(t) = x(t)y(t) becomes the convolution

S(f ) = X ∗ Y(f ) =
∫ +∞

−∞
X(λ)Y (f − λ)dλ, (2.60b)

where the operation is interpreted according to definition (2.38) for aperiodic
continuous-argument functions, since X(f ) and Y(f ) belong to this class.

• Letting t = 0 and f = 0 in definitions (2.55a) and (2.55b), respectively, we get

s(0) =
∫ +∞

−∞
S(f )df = area(S), S(0) =

∫ +∞

−∞
s(t)dt = area(s). (2.61)

Hence, the signal area equals the FT evaluated at f = 0.
• The energy Es of a signal s(t), defined by (2.11), can be evaluated from the FT

S(f ) as follows (Parseval Theorem):

Es =
∫ +∞

−∞
∣∣s(t)

∣∣2
dt =

∫ +∞

−∞
∣∣S(f )

∣∣2
df. (2.62)

For a real signal, |S(f )| is an even function of f , and the energy evaluation can
be limited to positive frequencies, namely

Es =
∫ +∞

−∞
s(t)2 dt = 2

∫ ∞

0

∣∣S(f )
∣∣2 df.

However, we note the perfect symmetry of (2.62), which emphasizes the oppor-
tunity to deal with complex signals.

• As seen above, the symmetry s(t) = s∗(t) (real signal) yields the Hermitian sym-
metry, S(f ) = S∗(−f ). Moreover, see Fig. 2.17,

1. If the signal is real and even, the FT is real and even;
2. If the signal is real and odd, the FT is imaginary and odd.
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Fig. 2.18 Symmetry rule. If signal s(t) has Fourier transform S(f ), then the signal S(t) has
transform s(−f ). In this specific case, s(t) and S(f ) are even and s(f ) = s(−f )

2.6.3 Symmetry Rule

Formulas (2.55a) and (2.55b), which express the signal and the FT, have a symmetri-
cal structure, apart from a sign change in the exponential. This leads to the symmetry
rule: If the FT of a signal s(t) is S(f ), then, interpreting the FT as a signal S(t), one
obtains that the FT is s(−f ) (Fig. 2.18).

The symmetry rule is very useful in the evaluation, since, starting from the
Fourier pair (s(t), S(f )), we get that also (S(t), s(−f )) is a consistent Fourier pair.
The symmetry rule explains also the symmetries between the rules of the FT.

2.6.4 Band and Bandwidth of a Signal

In the time-domain, we have introduced the extension e(s) and the duration D(s) =
meas e(s) of a signal. Symmetrically, in the frequency domain, we introduce the
spectral extension E(s) = e(S), defined as the extension of the FT, and the band-
width, defined as the measure of E(s):

B(s) = measE(s) = meas e(S). (2.63)

Then, the property of the spectral extension is

S(f ) = 0, f /∈ E(s). (2.63a)

For real signals, the Hermitian symmetry, S(f ) = S∗(−f ), implies that the min-
imal extension E0 is symmetric with respect to the frequency origin and it will be
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Fig. 2.19 Examples of limited spectral extension of a real signal; B represents the band

convenient to make such a choice also for an arbitrary extension E(s). Then, for a
real band-limited signal we indicate the spectral extension in the form (Fig. 2.19):

e(S) = [−B,B]
for a finite frequency B , which is called the band3 of s(t).

The first consequence of band limitation relies on the decomposition of a real sig-
nal into sinusoidal components (see (2.58)), i.e., |S(f )df | cos(2πf t + argS(f )),
f > 0, where S(f ) = 0 for f > B , that is, the signal does not contain components
with frequencies f greater than B . The second consequence will be seen with the
Sampling Theorem at the end of the chapter.

2.7 Examples of Fourier Transforms

We develop a few examples of FTs. Note that the FT of some “singular” signals,
as step signals and sinusoidal signals, can be written using the delta function, and
should be interpreted in the framework of distribution theory.

2.7.1 Rectangular and Sinc Pulses

The FT of the rectangular pulse can be calculated directly from definition (2.55b),
which yields

S(f ) = A0

∫ 1
2 D

− 1
2 D

e−i2πf t dt = A0

−i2πf

(
e−iπf D − eiπf D

) = A0
sinπf D

πf
.

Then, using the sinc function,

A0 rect(t/D)
F−−−−−−→ A0D sinc(f D). (2.64a)

3For real signals, it is customary to call as the band the half of the spectral extension measure.
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Fig. 2.20 Fourier transforms of the impulse and of the unit signal

In the direct evaluation of the FT of the sinc pulse, we encounter a difficult inte-
gral, instead we can apply the symmetry rule to the pair (s(t), S(f )) just evaluated.
We get

S(t) = A0D sinc(tD)
F−−−−−−→ s(−f ) = A0 rect(−f/D),

which is more conveniently written using the evenness of the rect function and mak-
ing the substitutions D → 1/T and A0D → A0. Hence

A0 sinc(t/T )
F−−−−−−→ A0T rect(f T ). (2.64b)

This FT pair has been illustrated in Fig. 2.18 in connection with the symmetry rule.

2.7.2 Impulses and Constant Signals

The technique for the FT evaluation of the impulse s(t) = δ(t − t0) is the usage of
the sifting property (2.32) in definition (2.55b), namely

S(f ) =
∫ +∞

−∞
δ(t − t0)e

−i2πf t dt = e−i2πf t0 .

Hence

δ(t − t0)
F−−−−−−→ e−i2πf t0 (2.65)

and particularly for t0 = 0

δ(t)
F−−−−−−→ 1, (2.65a)

that is, the FT of the impulse centered at the origin is unitary (Fig. 2.20).
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Note that the sifting property (2.32) holds also in the frequency domain, namely
∫ +∞

−∞
X(f )δ(f − f0)df = X(f0),

where X(f ) is an arbitrary frequency function. Then, with X(f ) = exp(i2πf t) we
find

∫ +∞

−∞
δ(f − f0)e

i2πf t df = ei2πf0t .

Hence, considering the uniqueness of the Fourier transform,

ei2πf0t F−−−−−−→ δ(f − f0). (2.66)

In particular, for f0 = 0

1
F−−−−−−→ δ(f ) (2.66a)

which states that the FT of the unit signal is an impulse centered at the frequency
origin (Fig. 2.20). Note that (2.66) could be obtained from (2.65) by the symmetry
rule.

2.7.3 Periodic Signals

The natural tool for periodic signals is the Fourier series which represents the signal
by a discrete-frequency function Sn = S(nF). We can also consider the Fourier
transform, but we obtain a “singular” result, however, expressed in terms of delta
functions.

A first example of FT of a periodic signal is given by (2.66), which states that
the FT of an exponential with frequency f0 is the impulse applied at the frequency
f0. A second example is given by sinusoidal signals, which can be decomposed into
exponentials (see (2.21)). We find

cos 2πF t = 1

2

(
ei2πF t + e−i2πF t

) F−−−−−−→ 1

2

[
δ(f − F) + δ(f + F)

]
,

sin 2πF t = 1

2i

(
ei2πF t − e−i2πF t

) F−−−−−−→ 1

2i

[
δ(f − F) − δ(f + F)

]
.

More generally, for a periodic signal s(t) that admits the Fourier series expan-
sion, we find

s(t) =
+∞∑

n=−∞
Snei2πnF t F−−−−−−→

+∞∑

n=−∞
Snδ(f − nF). (2.67)

Hence, the FT of a periodic signal consists of a train of delta functions at the fre-
quencies f = nF and with area given by the corresponding Fourier coefficients.
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Fig. 2.21 Graphical
representation of a
continuous-time filter

2.7.4 Step Signals

First, it is convenient to consider the signum signal sgn (t). In the appendix, we find
that its FT is given by

sgn(t)
F−−−−−−→ 1

iπf
.

This transform does not contain a delta function; anyway, it should be interpreted as
a distribution [2].

For the FT of the unit step function, we use decomposition (2.22), which gives

1(t) = 1

2
+ 1

2
sgn(t)

F−−−−−−→ 1

2
δ(f ) + 1

i2πf
.

Then, in the passage from the “signum” signal to the step signal, in the FT we
have to add a delta function of area equal to half the step amplitude, that is, equal to
the continuous component of the step signal.

2.8 Signal Filtering

Filtering is the most important operation used to modify some characteristics of
signals. Historically, its original target was the “filtering” of sinusoidal components
in the sense of passing some of them and eliminating the others. With the technology
evolution, filtering has a broader and more articulated purpose.

2.8.1 Time-Domain Analysis

A filter (linear, invariant and continuous-time) may be introduced as the system
characterized by the input–output relationship (Fig. 2.21)

y(t) =
∫ +∞

−∞
g(t − u)x(u)du = x ∗ g(t), (2.68)

where

• x(t), t ∈ R, is the input signal,
• y(t), t ∈ R, is the output signal or the filter response,
• g(t), t ∈ R, is the impulse response, which characterizes the filter.
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The interpretation of the impulse response is obtained by applying an impulse to the
input. Indeed, letting x(t) = δ(t) in (2.68) and considering property (2.41a, 2.41b),
we get

y(t) = δ ∗ g(t) = g(t).

Then, the impulse response is the filter response to the impulse applied at the origin.
The filter model stated by (2.68) does not entail considerations of physical con-

straints. A constraint is the causality condition which states that the filter cannot
“respond” before the application of the input signal (otherwise the filter would pre-
dict the future!). This condition implies that the impulse response must be a causal
signal, i.e.,

g(t) = 0, t < 0,

since it is the response to the impulse applied at t = 0 and cannot start at negative
times. A filter with this property will be called causal, otherwise anticipatory (or
non-causal). Physically implemented filters are surely causal, as correct models of
“real” filters, but in Signal Theory we often encounter anticipatory filters, used in a
simplified analysis (see below).

For causal filters the input–output relationship can be written in the more specific
forms

y(t) =
∫ t

−∞
x(u)g(t − u)du =

∫ +∞

0
g(u)x(t − u)du,

whereas for anticipatory filters the general form (2.68) must be used.

2.8.2 Frequency-Domain Analysis

In the frequency-domain, input–output relationship (2.68) becomes

Y(f ) = G(f )X(f ) (2.69)

where

• X(f ) is the FT of the input signal, Y(f ) is the FT of the output signal,
• G(f ) is the FT of the impulse response, which is called the frequency response.4

The frequency response G(f ) completely specifies a filter as well as the impulse
response g(x). When g(t) is real, the frequency response has the Hermitian sym-
metry G(f ) = G∗(−f ). Relationship (2.69) clearly states the advantage of dealing
with the frequency-domain analysis, where the convolution becomes a product. This
relationship, written as an inverse FT,

y(t) =
∫ +∞

−∞
Y(f )ei2πf t df =

∫ +∞

−∞
G(f )X(f )ei2πf t df,

4We prefer to reserve the term transfer function to the Laplace transform of the impulse response.
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Fig. 2.22 The RC filter and the corresponding frequency and impulse responses

shows that each exponential component of the output signal is obtained from the
corresponding component of the input signal as

[
Y(f )df

]
ei2πf t = G(f )

[
X(f )df

]
ei2πf t , f ∈ R. (2.70)

Hence, a filter modifies the complex amplitudes of the input signal components.
When both the input signal x(t) and the impulse response g(t) are real, the output

signal y(t) turns out to be real. If this is the case, considering the decomposition into
sinusoidal components, we find

2
∣∣Y(f )

∣∣df cos
[
2πf t + ϕY (f )

]

= ∣∣G(f )
∣∣2

∣∣X(f )
∣∣df cos

[
2πf t + ϕX(f ) + ϕG(f )

]
, f > 0.

Hence, the filter modifies both the amplitude and the phase of the components.

Examples As a first example, we consider the RC filter of Fig. 2.22. To iden-
tify the frequency response from its definition (we recall that G(f ) is the Fourier
transform of the impulse response), the following two steps are needed:

1. Applying a voltage impulse at the input, e(t) = δ(t), and evaluating the corre-
sponding output voltage v(t) (we need to solve the circuit in a transient regime).
Then, the output voltage v(t) gives the impulse response g(t).

2. Evaluating the Fourier transform G(f ) of g(t).

As known and as we shall see better in Chap. 9, it is more convenient to carry out
the evaluation in a symbolic form which yields directly

G(f ) = 1/(1 + i2πf RC).
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Fig. 2.23 Impulse response and frequency response of an ideal low-pass filter

Then, the inverse FT provides the impulse response which is given by

g(t) = α1(t)e−αt , α = 1/(RC).

This filter is causal, as expected, since it can be physically implemented.
As a second example, we consider the ideal low-pass filter which has the follow-

ing frequency and impulse responses (Fig. 2.23):

G(f ) = rect

(
f

2B

)
F−1−−−−−−→ g(t) = 2B sinc(2Bt).

This filter is anticipatory and cannot be physically implemented. Nevertheless, it is
a fundamental tool in Signal Theory (see Sampling Theorem).

2.9 Discrete Time Signals

In this second part of the chapter, we develop the topic of discrete signals.

Definition 2.3 A discrete-time signal is a complex function of a discrete variable

s : Z(T ) → C, (2.71)

where the domain Z(T ) is the set of the multiples of T

Z(T ) = {. . . ,−T ,0, T ,2T , . . .}, T > 0.

The signal (2.71) will usually be denoted in the forms

s(nT ), nT ∈ Z(T ) or s(t), t ∈ Z(T ). (2.72)

For discrete-time signals (more briefly, discrete signals), we will apply the same de-
velopment seen for continuous signals. Most of the definitions are substantially the
same; the main difference lies on the definitions expressed by integrals for continu-
ous signals, which become sums for discrete signals.

In the final part of the chapter, discrete signals will be related to continuous sig-
nals by the Sampling Theorem. Discrete signals will be reconsidered in great detail,
after the development of the Unified Theory in Chaps. 11, 12 and 13.



54 2 Classical Signal Theory

Notations In notations (2.72), the first one has the advantage of evidencing the
discrete nature of the signal, whereas the second requires the specification of the
domain Z(T ), but is more in agreement with the notation for continuous signals,
s(t), t ∈ R. The quantity T > 0 is the spacing (or time-spacing) between the instants
where the signal is defined, and the reciprocal

Fp = 1/T (2.73)

gives the signal rate, that is, the number of signal values per unitary time (values per
second or v/s).

In textbooks and in other literature, it is customary to assume a unit spacing
(T = 1) to simplify the notation in the form s(n) or sn with n ∈ Z. We will not follow
this consolidate convention for several reasons. First of all, by setting T = 1 we
loose the application contest and the physical dimensions. Another motivation is that
in the applications we often need to compare signals with different time-spacings
(see multirate systems of Chap. 7), which is no more possible after the normalization
T = 1. Finally, normalization represents a serious obstacle to a unified development.

2.9.1 Definitions

Most of the definitions introduced for continuous signals can directly be transferred
to discrete signals, but sometimes with unexpected novelties.

Symmetries A discrete signal s(nT ) is even, if for any n, s(nT ) = s(−nT ), n ∈ Z

and it is odd if s(nT ) = −s(−nT ), n ∈ Z. An arbitrary discrete signal can always
be decomposed into an even and an odd component

s(nT ) = sp(nT ) + sd(nT ) (2.73c)

exactly as for continuous signals.
A discrete signal s(nT ) is causal (Fig. 2.24) if it is zero for negative n,

s(nT ) = 0, n < 0. (2.74)

Relationships (2.6) between the even and odd components of a causal signal must
be adjusted for discrete signal since sgn(0) = 0. The correct relationships are

sd(nT ) = sgn(nT )sp(nT ),

sp(nT ) = sgn(nT )sd(nT ) + s(0)δn0
(2.74a)

whereas in the continuous domain R a single point has zero measure, and therefore
the term related to s(0) is irrelevant.

This is a general difference between the two classes, in so far two continuous
signals, which coincide almost everywhere, must be considered as the same signal,
whereas two discrete signals that differ even in a single point are really different.
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Fig. 2.24 Decomposition of
a causal discrete signal s(nT )

into even and odd parts

Time Shift Given a discrete signal s(nT ) and an integer n0, the signal
s(nT − n0T ) represents a shifted version of s(nT ) by the amount n0T . The dif-
ference with respect to the continuous case, where the shift t0 may be an arbitrary
real number, is that now the shift t0 = n0T must be a multiple of the spacing T .

Area and Mean Value The application of definition (2.9) would give zero for
every discrete signal. To get a useful parameter, the right definition is

area(s)
Δ=

+∞∑

n=−∞
T s(nT ). (2.75)

In this way, each value s(nT ) gives a contribution, T s(nT ), to the area.
In the interpretation of this definition (and similar others), it is convenient to refer

to a continuous signal s̃(t), t ∈ R, which is obtained from the given discrete signal
s(nT ) by a hold operation, namely (Fig. 2.25)

s̃(t) = s(nT ), nT ≤ t < (n + 1)T . (2.76)

This continuous signal has the same area as s(nT ), but the area of s̃(t) is evaluated
according to (2.9) and the area of s(nT ) according to (2.75).

The mean value of a discrete signal s(nT ) is defined by the limit

ms = lim
N→+∞

1

(2N + 1)T

+N∑

n=−N

T s(nT ). (2.77)

Remark The hold signal s̃(t) is not completely useful to study discrete signals
using continuous signal definitions. For instance, the FT applied to s̃(t), t ∈ R does
not give the FT of s(t), t ∈ Z(T ).
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Fig. 2.25 Discrete signal and
correspondent continuous
signal obtained by a hold
interpolation

Energy and Power A discrete signal has zero energy and zero power, if these
parameters are interpreted in the sense of continuous signals. The appropriate defi-
nitions for discrete signals are

Es = lim
N→∞

N∑

n=−N

T
∣∣s(nT )

∣∣2 =
+∞∑

n=−∞
T

∣∣s(nT )
∣∣2

, (2.78a)

Ps = lim
N→∞

1

(2N + 1)T

N∑

n=−N

T
∣∣s(nT )

∣∣2 (2.78b)

which are in agreement with definitions (2.75) and (2.77). Moreover, Es and Ps

defined by (2.78a, 2.78b) equal respectively the energy and the power of the hold
signal of Fig. 2.25.

Extension and Duration The extension e(s) of a discrete signal may be defined
as a set of consecutive points nT such that (Fig. 2.26)

s(nT ) = 0, nT /∈ e(s).

The difference with respect to the extension of a continuous signal is that e(s) is a
subset of the domains Z(T ) and therefore consists of isolated points.

The duration of a discrete signal is defined by

D(s) = meas e(s) = T × number of points of e(s).

Here the measure is not the Lebesgue measure, which assigns zero to every set of
isolated points, but the Haar measure, which assigns the finite value T to each point
of the extension. Figure 2.26 shows an example of discrete signal with extension,
e(s) = {−5T , . . . ,11T }, whose duration is D(s) = 17T .
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Fig. 2.26 Discrete signal with a limited extension: e(s) = {ts , . . . , Ts} with ts = −5T and
Ts = 11T . The duration is D(s) = 17T

Fig. 2.27 Periodic discrete signal with period Tp = 10T

2.9.2 Periodic Discrete Signals

A discrete signal s(nT ) is periodic if

s(nT + NT ) = s(nT ), ∀n ∈ Z

where N is a natural number. Clearly, the period Tp = NT must be a multiple of the
spacing T . Figure 2.27 shows an example of a periodic discrete signal with period
Tp = 10T .

As seen for continuous signals, some definitions must be modified for periodic
signals. The rule is that the summations extended to the whole domain Z(T ) must
be limited to a period. For instance, the definition of energy given by (2.78a) for a
periodic discrete signal is modified as energy in a period, namely

Es =
n0+N−1∑

n=n0

T
∣∣s(nT )

∣∣2
,

where n0 is an arbitrary integer (usually set to n0 = 0).



58 2 Classical Signal Theory

Fig. 2.28 Example of sampling of a continuous signal

Fig. 2.29 Discrete step signal compared with sampled continuous step signal

As noted in the introduction (see Sect. 1.3), the class of periodic discrete sig-
nals is very important in applications, since they are the only signals that can be
handled directly on a digital computer. The reason is that a periodic discrete signal
s(nT ) with the period Tp = NT is completely specified by its finitely many values
in a period, say s(0), s(T ), . . . , s((N − 1)T ). For all the other classes, the signal
specification involves infinitely many values.

2.10 Examples of Discrete Signals

Examples of discrete signals can autonomously be introduced, but frequently they
are obtained from continuous signals with a domain restriction from R into Z(T ).
This operation, called sampling, is stated by the simple relationship (Fig. 2.28)

sc(nT ) = s(nT ), nT ∈ Z(T ) (2.79)

where s(t), t ∈ R, is the reference continuous signal and sc(nT ),nT ∈ Z(T ), is the
discrete signal obtained by the sampling operation.

2.10.1 Discrete Step Signal

The discrete unit step signal (Fig. 2.29) is defined by

10(nT ) =
{

0 for n < 0;
1 for n ≥ 0.

(2.80)
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Fig. 2.30 Example of discrete rectangular pulses, compared with its continuous-time version.
Above centered at the origin and below centered out of the origin

Note in particular that at the time origin 10(nT ) takes a unit value. Instead, the signal
obtained by sampling a unit step continuous signal is given by

1(nT ) =

⎧
⎪⎨

⎪⎩

0 for n < 0;
1
2 for n = 0;
1 for n > 0,

as follows from the convention on discontinuities of continuous signals (see
Sect. 2.1).

2.10.2 Discrete Rectangular Pulses

The discrete rectangular pulse with extension

e(r) = {
n1T , (n1 + 1)T , . . . , n2T

}
, n1 ≤ n2,

can be written in the form

r(nT ) = rect

(
nT − t0

D

)
(2.81)

where

t0 = n1 + n2

2
T , D = (n2 − n1 + 1)T (2.81a)

are respectively the central instant and the duration. Note that expression (2.81) is
not ambiguous since discontinuities of the function rect(x) are not involved therein.
Figure 2.30 shows a few examples of discrete rectangular pulses.
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Fig. 2.31 The discrete impulse with unit area at the origin and with area α applied at n0T = 4T

2.10.3 Discrete Impulses

We want a discrete signal with the same properties of the impulse, introduced for
continuous signal by means of the delta function. However, in the discrete case the
formalism of delta function (which is a distribution) is not necessary. In fact, the
discrete signal defined by (Fig. 2.31)

δ(nT ) =
{

1
T

for n = 0;
0 for n �= 0

(2.82)

has exactly the same properties as the continuous impulse δ(t), namely the extension
of δ(nT ) is limited to the origin, i.e., e(δ) = {0}, δ(nT ) has unit area, δ(nT ) has the
sifting property

+∞∑

n=−∞
T s(nT )δ(nT − n0T ) = s(n0T ), (2.83a)

the convolution (see the next section) of an arbitrary signal s(nT ) with the impulse
δ(nT ) yields the signal itself

s(nT ) =
+∞∑

k=−∞
T s(kT )δ(nT − kT ). (2.83b)

In general, the impulse with area α and applied at n0T must be written in the
form αδ(nT −n0T ). Note that a discrete impulse is strictly related to the Kronecker
delta, namely

T δ(nT − n0T ) = δnn0 =
{

1 for n = n0;
0 for n �= n0.

(2.84)

2.10.4 Discrete Exponentials and Discrete Sinusoidal Signals

A discrete exponential signal has the general form

s(nT ) = Kan (2.85a)
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Fig. 2.32 Examples of discrete causal exponential

Fig. 2.33 Discrete sinusoidal signal with f0T = 1/10

where K and a are complex constants. In particular, when |a| = 1, it can be written
as

Aei2πf0nT (2.85b)

where A is a complex amplitude and f0 is a real frequency (positive or negative).
A discrete causal exponential signal has the general form

K10(nT )an, (2.86)

where K and a are complex constants. Figure 2.32 illustrates this signal for K = 1
and two values of a.

A discrete sinusoidal signal has the form (Fig. 2.33)

A0 cos(2πf0nT + ϕ0) (2.87)

where both A0 and f0 are real and positive, and can be expressed as the sum of two
exponentials of the form (2.85b) (see (2.21)).
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Fig. 2.34 Convolution of two time-limited discrete signals. Note that the convolution duration is
D(s) = D(x) + D(y) − T

2.11 Convolution of Discrete Signals

As seen for continuous signals, we have different definitions for discrete aperiodic
signals and for discrete periodic signals.

2.11.1 Aperiodic Discrete Signals

Given two discrete aperiodic signals x(nT ) and y(nT ), the convolution defines a
new discrete signal s(nT ) according to

s(nT ) =
+∞∑

k=−∞
T x(kT )y(nT − kT ). (2.88)

This is concisely denoted by s = x ∗ y or, more explicitly, by s(nT ) = x ∗ y(nT ).
Discrete convolution has the same properties as continuous convolution seen in

Sect. 2.4 (rules on commutativity, area, etc.). Here, we outline only the extension
rule. If x(nT ) and y(nT ) have the limited extensions

e(x) = {nxT , . . . ,NxT }, e(y) = {nyT , . . . ,NyT }
then also their convolution s(nT ) = x ∗ y(nT ) has a limited extension given by

e(s) = {nsT , . . . ,NsT } with ns = nx + ny,Ns = Nx + Ny. (2.89)

Figure 2.34 shows an example, where e(x) = {−3T , . . . ,5T } and e(y) =
{−2T , . . . ,5T }. Then e(s) = {−5T , . . . ,10T }.
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2.11.2 Periodic Discrete Signals

At this point, the right definition of the convolution for this class of signals should
be evident. Given two periodic discrete signals x(nT ) and y(nT ) with the same
period Tp = NT , their convolution is

s(nT ) =
k0+N−1∑

k=k0

T x(kT )y(nT − kT ), (2.90)

where the summation is limited to a period. The result is a signal s(nT ) with the
same period Tp = NT .

The “periodic discrete” convolution, often called the cyclic convolution, has the
same properties as the other kind of convolutions.

2.12 The Fourier Transform of Discrete Signals

Discrete signals can be represented in the frequency domain by means of the FT, as
seen for continuous signals. In the discrete case, the physical interpretation of the
FT may be less evident, but nevertheless it is a very useful tool.

2.12.1 Definition

A discrete signal s(nT ), nT ∈ Z(T ) can be represented in the form

s(nT ) =
∫ f0+Fp

f0

S(f )ei2πf nT df , (2.91a)

where S(f ) is the FT of s(nT ), which is given by

S(f ) =
+∞∑

n=−∞
T s(nT )e−i2πf nT . (2.91b)

In (2.91a), the integral is extended over an arbitrary period (f0, f0 + Fp) of the
FT. The FT S(f ) is a periodic function of the real variable f (Fig. 2.35) with period

Fp = 1/T .

This is a consequence of the periodicity of the exponential function e−i2πf nT with
respect to f . Remarkable is the fact that the period of S(f ), expressed in cycles per
second (or hertz), equals the signal rate, expressed in values per second.
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Fig. 2.35 Fourier transform of a real discrete time signal represented by real and imaginary parts,
and by modulus and argument

As for continuous signals, we use the notations S(f ) = F[s | f ] and s(nT ) =
F−1[S | nT ] and also

s(nT )
F−−−−−−→ S(f ), S(f )

F−1−−−−−−→ s(nT ).

The operator
F−−−−−−→ represents a complex function of a discrete variable,

s(nT ), by a periodic function of continuous variable, S(f ).

2.12.2 Interpretation

According to (2.91a), a discrete signal s(nT ) is represented as the sum of infinitely
many exponentials of the form

[
S(f )df

]
ei2πf nT , f ∈ [f0, f0 + Fp),

with infinitesimal amplitude S(f )df and frequency f belonging to a period of
the FT. The reason of this frequency limitation is due to the periodicity of discrete
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exponentials. In fact, the components with frequency f and f + kFp are equal

[
S(f )df

]
ei2πf nT = [

S(f + kFp)df
]
ei2π(f +kFp)nT , ∀k ∈ Z.

We can therefore restrict the frequency range to a period, which may be [0,Fp), that
is,

s(nT ) =
∫ Fp

0
S(f )ei2πf nT df, Fp = 1

T
. (2.92)

The conclusion is that the maximum frequency contained in a discrete signal s(nT )

cannot exceed the signal rate Fp = 1/T .
For a real signal, s∗(nT ) = s(nT ), the FT S(f ) has the Hermitian symmetry

S(f ) = S∗(−f ).

This symmetry, combined with the periodicity S(f +Fp) = S(f ), allows restricting
the range from [0,Fp) into [0, 1

2Fp). Moreover, from (2.92) we can obtain the form

s(nT ) =
∫ 1

2 Fp

0
2AS(f ) cos

(
2πf nT + βS(f )

)
df (2.93)

where

AS(f ) = ∣∣S(f )
∣∣ βS(f ) = argS(f ).

In the sinusoidal form (2.93), the maximum frequency is 1
2Fp , which is called the

Nyquist frequency.

2.12.3 Properties of the Fourier Transform

Here we consider only a few of the several properties (or rules).

• The shifted version of a discrete signal, y(nT ) = s((n − n0)T ), has FT

Y(f ) = S(f )e−i2πf n0T . (2.94)

• The FT of convolution, s(nT ) = x ∗ y(nT ), is given by the product of the FTs

S(f ) = X(f )Y (f ). (2.95)

Note the consistency of this rule: since X(f ) and Y(f ) are both periodic of period
Fp , also their product is periodic with the same period, Fp .

• The FT of the product of two signals, s(nT ) = x(nT )y(nT ), is given by the
(cyclic) convolution of their FT (see (2.44))

S(f ) = X ∗ Y(f ) =
∫ f0+Fp

f0

X(λ)Y (f − λ)dλ. (2.96)



66 2 Classical Signal Theory

Fig. 2.36 Fourier transforms of the discrete impulse and of the discrete unit signal

• Parseval theorem allows evaluating the signal energy from the Fourier transform
according to

Es =
+∞∑

n=−∞
T

∣∣s(nT )
∣∣2 =

∫ f0+Fp

f0

∣∣S(f )
∣∣2 df (2.97)

where the integral is over an arbitrary period of S(f ).

2.12.4 Examples of Fourier Transforms

The explicit evaluation of the Fourier transform, according to (2.91b), requires the
summation of a bilateral series; in the general case, this is not easy. The explicit
evaluation of the inverse Fourier transform, according to (2.91a), requires the inte-
gration over a period.

Impulses and Constant Signals The FT evaluation of the impulse applied at n0T

is immediate

δ(nT − n0T )
F−−−−−−→ e−i2πf n0T .

Note that with the notation δ(t − t0) instead of δ(nT − n0T ) the above expression
takes the same form as seen for the continuous case (see (2.65))

δ(t − t0)
F−−−−−−→ e−i2πf t0,

where now t, t0 ∈ Z(T ). In particular, for t0 = n0T = 0 we find (Fig. 2.36)

δ(nT )
F−−−−−−→ 1.
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Fig. 2.37 Fourier transform of a cosinusoidal and of sinusoidal discrete signal

Less trivial is the FT evaluation of the unit signal, s(nT ) = 1, since the defini-
tion (2.91b) gives

S(f ) = T

+∞∑

n=−∞
e−i2πf nT ,

where the series is not summable. To overcome the difficulty, we can use the iden-
tity (2.53) established in the contest of Fourier series and now rewritten in the form

+∞∑

n=−∞
e−i2πf nT = Fp repFp

δ(f ), Fp = 1/T . (2.98)

Then, we find (Fig. 2.36)

1
F−−−−−−→ repFp

δ(f )
Δ= δFp(f ). (2.99)

Hence, the FT of the unit discrete signal, s(nT ) = 1, consists of the periodic repe-
tition of the frequency impulse δ(f ). Remarkable is the fact that the delta function
formalism allows the evaluation of the sum of a divergent series!

Exponential and Sinusoidal Signals If we replace f with f − f0 in identity
(2.98), we find the Fourier pair

ei2πf0nT F−−−−−−→ repFp
δ(f − f0) = δFp (f − f0),

which gives the FT of the discrete exponential. Next, using Euler’s formulas, we
obtain the FT of sinusoidal discrete signals (Fig. 2.37), namely

cos 2πf0nT
F−−−−−−→ 1

2

[
δFp (f − f0) + δFp (f + f0)

]
,
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Fig. 2.38 Fourier transform of a discrete rectangular pulse

sin 2πf0nT
F−−−−−−→ 1

2i

[
δFp (f − f0) − δFp (f + f0)

]
.

Rectangular Pulses The discrete rectangular pulse of duration (2n0 + 1)T

s(nT ) =
{

A0 for |n| ≤ n0;
0 for |n| > n0

has as FT

S(f ) = A0T

n0∑

n=−n0

e−i2πf nT .

This finite sum can be expressed by means of the periodic sinc function, as seen in
Example 2.6 of Sect. 2.5. The result is

S(f ) = A0NT sincN(f NT ), N = 2n0 + 1.

Figure 2.38 illustrates S(f ) for n0 = 3 (N = 7).

Causal Exponentials The FT of the signal s(nT ) = 10(n)an is

S(f ) = T

+∞∑

n=0

ane−i2πf nT = T

+∞∑

n=0

(
ae−i2πf T

)n
. (2.100)

If |a| < 1 the geometrical series is convergent, since

∣∣ae−i2πf T
∣∣ = |a| < 1

and the FT is given by

S(f ) = T

1 − a exp(−i2πf T )
.

If |a| > 1 the geometrical series is divergent and the FT does not exist.
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2.13 The Discrete Fourier Transform (DFT)

The DFT is commonly introduced to represent a finite sequence of values

s0, s1, . . . , sN−1 (2.101a)

by another finite sequence of values

S0, S1, . . . , SN−1. (2.101b)

The two sequences are related by the relationships

sn = 1

N

N−1∑

k=0

SkW
nk
N , Sk =

N−1∑

n=0

snW
−nk
N , (2.102)

where WN is the N th root of the unity

WN = exp(i2π/N). (2.103)

The first of (2.102) represents the inverse DFT (IDFT) and the second represents
the DFT. They are a consequence of the orthogonality condition

1

N

N−1∑

m=0

Wmk
N W−nm

N = δnk.

Comments The DFT works with a finite number of values, and therefore it can
be implemented on a digital computer. Its implementation is usually done by a very
efficient algorithm, called the FFT (fast Fourier transform) (see Chap. 13).

In Signal Theory, the DFT represents the FT for periodic discrete signals and the
finite sequence (2.101a) gives the signal values in a period and, analogously, the
finite sequence (2.101b) gives the Fourier transform values in a period. However,
the classical form (2.102) does not show clearly this assertion and the connection
(or similarity) with the other FTs.

This will be seen after the development of the Unified Theory, in Chap. 11 and
Chap. 13, where the DFT will be obtained as a special case of the unified Fourier
transform.

2.14 Filtering of Discrete Signals

A discrete filter (linear, invariant) can be formulated as a system with the following
input–output relationship (Fig. 2.39):

y(nT ) =
+∞∑

k=−∞
T g(nT − kT )x(kT ), nT ∈ Z(T ) (2.104)
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Fig. 2.39 Interpretation of impulse response of a discrete-time filter

where x(kT ) is the input signal, y(nT ) is the output signal and g(nT ) is the impulse
response which specifies the filter.

We may recognize that (2.104) is a convolution, namely y(nT ) = g ∗ x(nT ),
according to the definition given for (aperiodic) discrete signals in Sect. 2.11. As
seen for continuous filters, the meaning of g(nT ) is the response of the filter to the
discrete impulse δ(nT ) defined by (2.82).

The input–output relationship (2.104) in the frequency domain becomes

Y(f ) = G(f )X(f ) (2.105)

where G(f ) is the Fourier transform of the impulse response g(nT ), called the
frequency response of the filter.

Thus, we recognize that the frequency-domain analysis of a discrete filter is ex-
actly the same seen for a continuous filter in Sect. 2.8.

2.15 Sampling Theorem

The Sampling Theorem provides a connection between the classes of continuous
and discrete signals.

2.15.1 The Operation of Sampling

In Sect. 2.3, we have seen that sampling gives a discrete signal sc(nT ) starting from
a continuous signal s(t), t ∈ R according to the relationship

sc(nT ) = s(nT ), nT ∈ Z(T ).

The values s(nT ) are called the samples of s(t), the spacing T is called the sampling
period and Fc = 1/T is the sampling frequency (it gives the number of samples per
second).

Since sampling drops a portion of the original signal s(t), it is evident that the
recovery of s(t) from its samples s(nT ) is not possible, in general. However, for a
band-limited signal a perfect recovery becomes possible. This is stated by the Sam-
pling Theorem which will now be formulated in the classical form. A very different
formulation will be seen with the Unified Theory, in Chap. 8.
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2.15.2 Formulation and Proof of Sampling Theorem

Theorem 2.1 Let s(t), t ∈ R be a band-limited signal according to

S(f ) = 0 for |f | > B. (2.106)

If the sampling frequency Fc is at least twice the band, Fc ≥ 2B , then s(t) can be
recovered by its samples s(nT ), n ∈ Z according to the reconstruction formula

s(t) =
+∞∑

n=−∞
s(nT ) sinc

[
Fc(t − nT )

]
. (2.107)

Proof Band-limitation stated by (2.106) allows writing the inverse FT in the form

s(t) =
∫ 1

2 Fc

− 1
2 Fc

S(f )ei2πf t df. (2.108a)

This, evaluated at t = nT , gives

s(nT ) =
∫ 1

2 Fc

− 1
2 Fc

S(f )ei2πf nT df. (2.108b)

Next, consider the periodic repetition of the FT S(f ), with period Fc,

Sp(f ) =
+∞∑

k=−∞
S(f − kFc). (2.109)

Since Sp(f ) is periodic, it can be expanded into a Fourier series (this expansion
has been considered for time functions, but it also holds for frequency functions).
Considering that the period of Sp(f ) is Fc, we have

Sp(f ) =
+∞∑

n=−∞
Snei2πf nT , T = 1/Fc, (2.110a)

where

Sn = 1

Fc

∫ 1
2 Fc

− 1
2 Fc

Sp(f )e−i2πf nT df. (2.110b)

Now, by the band-limitation, we find that the terms of the periodic repetition do
not overlap (Fig. 2.40) and Sp(f ) equals S(f ) in the interval (− 1

2Fc,
1
2Fc), that is,

Sp(f ) = S(f ), − 1
2Fc < f < 1

2Fc.
Then, replacing Sp(f ) with S(f ) in (2.110b) and comparing with (2.108b), we

obtain

FcSn = s(−nT ). (2.110c)
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Fig. 2.40 Example of band-limited Fourier transform S(f ) and its periodic repetition with
Fc > 2B

Finally, using series expansion (2.110a) in (2.108a), we find

s(t) =
+∞∑

n=−∞

∫ 1
2 Fc

− 1
2 Fc

Sne
j2πf (t+nT ) df =

+∞∑

n=−∞
SnFc sinc

[
Fc(t + nT )

]
.

To complete the proof, it is sufficient to take into account (2.110c). �

2.16 Final Comments on Classical Theory

In this chapter, we have introduced and developed the two signal classes:

1. Continuous-time signals with domain R, and
2. Discrete-time signals with domain Z(T ).

A systematic comparison of definitions introduced in the time domain for the two
classes brings to evidence the strong similarity, with the main difference that in the
passage from class 1 to class 2 integrals are replaced by summations, specifically

∫ +∞

−∞
s(t)dt−−→

+∞∑

n=−∞
T s(nT ).

In the frequency domain, the two classes give respectively: class 1 of continuous-
frequency Fourier transforms, with domain R, and class 2 of continuous-frequency
Fourier transforms with domain R and period Fp = 1/T . In this comparison, the
rule of passing from time to frequency domain is not clear. To get this rule, we have
to consider not only the domain, but also the periodicity.
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On the other hand, we have realized that periodicity plays a fundamental role
in definitions. In fact, from class 1 we have extracted the subclass 1(a) of periodic
signals and used for them the integral limited to a period instead of the integral over
the whole real axis, that is,

∫ +∞

−∞
s(t)dt−−→

∫ t0+Tp

t0

s(t)dt.

Analogously, from class 2 we have extracted the subclass 2(a) of periodic signals
with the substitution

+∞∑

n=−∞
T s(nT )−−→

n0+N−1∑

n=n0

T s(nT ).

In the frequency domain, the two subclasses of periodic signals give respectively:
class 1(a) of discrete-frequency Fourier transforms, with domain Z(F ), F = 1/Tp ,
and class 2(a) of discrete-frequency Fourier transforms, with domain Z(F ) and pe-
riod Fp = 1/T .

In conclusion, in order to find a link between time and frequency domains it
is necessary to consider periodicity or aperiodicity. Only in this way, we find that
the global class of signals, consisting of subclasses 1, 2, 1(a) and 2(a), has a full
counterpart in the frequency domain consisting of subclasses of exactly the same
type. This link will automatically be provided by the Unified Theory.

2.17 Problems

2.1 � [Sect. 2.1] Assuming that a continuous-time signal s(t) is the mathematical
model of an electrical voltage, find the physical dimensions of the following quan-
tities: area, mean value, (specific) energy, and (specific) power.

2.2 � [Sect. 2.2] Show that the area over a period of a periodic signal defined
by (2.17a) is independent of t0.

2.3 �� [Sect. 2.2] Show that the mean value over a period for a periodic signal,
defined by (2.17b), is equal to the mean value defined in general by (2.10).

2.4 � [Sect. 2.3] Using the functions 1(x) and rect(x) write a concise expression for
the signal

s(t) = 3 for t ∈ (−5,1), s(t) = t for t ∈ (2,4), s(t) = 0 otherwise.

2.5 � [Sect. 2.3] Find the extension, duration, area and energy of the signal of Prob-
lem 2.4.
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2.6 � [Sect. 2.3] Find the energy of the causal exponential with p0 = 2 + i2π5.

2.7 � [Sect. 2.3] Write a mathematical expression of a triangular pulse u(t) deter-
mined by the following conditions: u(t) is even, has duration 2 and energy 10.

2.8 � [Sect. 2.3] An even-symmetric triangular pulse u(t) of duration 4 and ampli-
tude 2 is periodically repeated according to (2.16). Draw the periodic repetition in
the following cases: Tp = 8, Tp = 4 and Tp = 2.

2.9 �� [Sect. 2.3] Write the derivative r ′(t) of the rectangular pulse r(t) defined
by (2.26). Verify that the integral of r ′(t) from −∞ to t recovers r(t).

2.10 �� [Sect. 2.3] Write the first and second derivatives of the rectified sinusoidal
signal

s(t) = A0|cosω0t |.

2.11 �� [Sect. 2.3] Find the (minimum) period of the signal

s(t) = 2 cos
2

3
ω0t + 3 sin

4

5
ω0t.

2.12 �� [Sect. 2.4] Show that the (acyclic) convolution of an arbitrary signal x(t)

with a sinusoidal signal y(t) = A0 cos(ω0t +φ0) is a sinusoidal signal with the same
period as y(t).

2.13 � [Sect. 2.4] Show that the derivative of the convolution s(t) of two derivable
signals x(t) and y(t) is given by s′ = x′ ∗ y = x ∗ y′.

2.14 ��� [Sect. 2.4] Evaluate the convolution of the following pulses:

x(t) = A1 rect(t/2D), y(t) = A2 exp(−t2/D2).

Hint. Express the result in terms of the normalized Gaussian distribution


(x) =
∫ x

−∞
1√
2π

e− 1
2 y2

dy.

2.15 � [Sect. 2.4] Evaluate the convolution of the signals

x(t) = A1 sinc(t/D), y(t) = A2δ(t) + A3δ(t − 2D).

2.16 ��� [Sect. 2.4] Evaluate the (cyclic) convolution of the signal

x(t) = repTp
rect(t/T ),

with x(t) itself (auto-convolution). Assume Tp = 4T .
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2.17 � [Sect. 2.5] Show that the Fourier coefficients have the same physical di-
mensions as the signal. In particular, if s(t) is a voltage in volts, also Sn must be
expressed in volts.

2.18 � [Sect. 2.5] Starting from the exponential form of the Fourier series and as-
suming a real signal, prove (2.49a) and (2.49b). Note that in this case S0 is real.

2.19 � [Sect. 2.5] Show that if s(t) is real and even, then its sine–cosine expan-
sion (2.49a) becomes an only cosine expansion.

2.20 ��� [Sect. 2.5] Assume that a periodic signal has the following symmetry:

s(t) = −s(t − Tp/2).

Then, show that the Fourier coefficients Sn are zero for n even, i.e., the even har-
monics disappear. Hint: use (2.50).

2.21 �� [Sect. 2.5] Evaluate the mean value, the root mean square value and the
Fourier coefficients of the periodic signal

s(t) = repTp

[
rect

(
t

T0

)
A0

(
1 − |t |

T0

)]

in the cases Tp = 2T0 and Tp = T0.

2.22 � [Sect. 2.5] Check Parseval’s Theorem (2.51a) for a sinusoidal signal (see
Example 2.4).

2.23 � [Sect. 2.5] Evaluate the Fourier coefficients of the signal

s(t) = repTp

[
δ

(
t − 1

4
Tp

)
− δ

(
t − 3

4
Tp

)]

and find symmetries (if any).

2.24 � [Sect. 2.6] Find the physical dimension of the Fourier transform S(f ) when
the signal is an electric voltage.

2.25 �� [Sect. 2.6] Show that if s(t) is real, S(f ) has the Hermitian symmetry. Hint:
use (2.55a, 2.55b).

2.26 �� [Sect. 2.6] Prove rule (2.60b) on the product of two signals.

2.27 �� [Sect. 2.6] Prove that the product s(t) = x(t)y(t) of two strictly band-
limited signal is strictly band-limited with

B(s) = B(x) + B(y).

Hence, in particular, the band of x2(t) is 2B(x).
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2.28 � [Sect. 2.7] Evaluate the Fourier transform of the causal signal

s(t) = 1(t)e−t/T , T > 0

and then check that it verifies the Hermitian symmetry.

2.29 � [Sect. 2.7] Prove the relationship

s(t) cos 2πf0t
F−−−−−−→ 1

2
S(f − f0) + 1

2
S(f + f0) (2.111)

called modulation rule.

2.30 � [Sect. 2.7] Using (2.111) evaluate the Fourier transform of the signal

s(t) = rect(t/T ) cos 2πf0t.

Then, draw graphically S(f ) for f0T = 4, checking that it is an even real function.

2.31 �� [Sect. 2.7] Using the rule on the product, prove the relationship

1(t) cos 2πf0t
F−−−−−−→ 1

4

[
δ(f − f0) + δ(f + f0) + 1

iπ(f − f0)
+ 1

iπ(f + f0)

]
.

2.32 ��∇ [Sect. 2.7] The scale change (see Sect. 6.5) has the following rule

s(at)
F−−−−−−→ (1/|a|)S(f/a) a �= 0. (2.112)

Then, giving as known the pair e−πt2 F−−−−−−→ e−πf 2
, evaluate the Fourier trans-

form of the Gaussian pulse

u(t) = A0√
2πσ

exp

[
−1

2

(
t

σ

)2]
.

2.33 �� [Sect. 2.7] Evaluate the Fourier transform of the periodic signal

s(t) = repTp
rect

(
t

D

)
.

2.34 �� [Sect. 2.7] Prove the relationship

triang

(
t

D

)
= rect

(
t

2D

)(
1 − |t |

D

)
F−−−−−−→ D sinc2(f D)

where the signal is the 2D-duration triangular pulse.
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Fig. 2.41 Fourier transform of discrete sinc pulse

2.35 ��� [Sect. 2.7] Consider the decomposition of a real signal in an even and an
odd components

s(t) = se(t) + so(t).

Then, prove the relationship

se(t)
F−−−−−−→ �S(f ), so(t)

F−−−−−−→ j�S(f ).

2.36 � [Sect. 2.12] Evaluate the Fourier transforms of the signals

s1(nT ) =
{

A0, for n = ±1;
0, otherwise,

s2(nT ) =
{

A0, for n = −1,0,1;
0, otherwise,

and check that S1(f ) and S2(f ) are (a) periodic with period Fp = 1/T , (b) real and
(c) even.

2.37 � [Sect. 2.12] With the signals of the previous problem check the Parseval
theorem (2.97).

2.38 � [Sect. 2.12] Show the relationship

sinc(nF0T )
F−−−−−−→ (1/F0) repFp

rect(f/F0),

illustrated in Fig. 2.41 for F0T = 1
2 . Hint: show that the inverse Fourier transform

of S(f ) is s(nT ).

2.39 �� [Sect. 2.15] Apply the Sampling Theorem to the signal

s(t) = sinc3(F t), t ∈ R

with F = 4 kHz.
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Appendix: Fourier Transform of the Signum Signal sgn(t)

The Fourier transform definition (2.55b) yields

∫ +∞

−∞
sgn(t)e−i2πf t dt = 2

i

∫ ∞

0
sin 2πf t dt.

These integrals do not exist. However, sgn (t) can be expressed as the inverse Fourier
transform of the function 1/(iπf ), namely

sgn(t) =
∫ +∞

−∞
1

iπf
ei2πf t df

Δ= x(t) (2.113a)

provided that the integral is interpreted as a Cauchy principal value, i.e.,

x(t) =
∫ +∞

−∞
1

iπf
ei2πf t df = lim

F→∞

∫ F

−F

1

iπf
ei2πf t df. (2.113b)

Using Euler’s formula, we get

x(t) =
∫ +∞

−∞
1

iπf
cos(2πf t)df +

∫ +∞

−∞
1

πf
sin(2πf t)df

where the integrand (1/i2πf ) cos(2πf ) in an odd function of f , and therefore the
integral is zero. Then

x(t) =
∫ +∞

−∞
sin(2πf t)

πf
df.

Now, for t = 0 we find x(0) = 0. For t �= 0, letting

2f t → u, df → du

2t
,

we obtain

x(t) =
{∫ +∞

−∞
sin(πu)

πu
du for t > 0;

∫ −∞
+∞

sin(πu)
πu

du = − ∫ +∞
−∞

sin(πu)
πu

du for t < 0.

It remains to evaluate the integral

I =
∫ +∞

−∞
sin(πu)

πu
du =

∫ +∞

−∞
sinc(u)du.

To this end, we use the rule (2.61) giving for a Fourier pair s(t), S(f )

area(S) =
∫ +∞

−∞
S(f )df = s(0)
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with s(t) = rect(t), S(f ) = sinc(f ) (see (2.64a, 2.64b)). Hence, we obtain

∫ +∞

−∞
sinc(f )df = s(0) = rect(0) = 1.

Combination of the above results gives x(t) = sgn(t).
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