
Lecture 9



What is an image?
 Ideally, we think of an image as a 2‐dimensional  light 
intensity function, f(x,y), where x and y are spatial 
coordinates, and f at (x,y) is related to the brightness or 
color of the image at that point.

 In practice, most images are defined over a rectangle.
 Continuous in amplitude („continuous‐tone“)
 Continuous in space: no pixels!



Digital Images and Pixels
 A digital image is the representation of a continuous 
image f(x,y) by a 2‐d array of discrete samples. The 
amplitude of each sample is quantized to be represented 
by a finite number of bits.

 Each element of the 2‐d array of samples is called a pixel 
or pel (from “picture element”)

 Pixels are point samples, without extent.
 A pixel is not:

 Round, square, or rectangular
  An element of an image sensor
 m An element of a display



A Digital Image is Represented by Numbers



An image can be represented as a matrix
 The pixel values f(x,y) are sorted into the matrix in 

“natural” order, with x corresponding to the column and y to 
the row index. 

 Matlab, instead, uses matrix  convention. This results in 
f(x,y) = fyx, where fyx denotes an individual element in 
common matrix notation.

 For a color image, f might be one of the components.



Image Size and Resolution

 These images were produced by simply picking every 
n‐th sample horizontally and vertically and replicating 
that value nxn times.

 We can do better
 prefiltering before subsampling to avoid aliasing
 Smooth interpolation



Image of different size



Fewer Pixels Mean Lower Spatial Resolution



Color Components



Different numbers of gray levels



How many gray levels are required?
 How many gray levels are required?

 Digital images typically are quantized to 256 gray 
levels.



Histograms
 Distribution of gray‐levels can be judged by measuring a 

histogram:
 For B‐bit image, initialize 2B counters with 0
 Loop over all pixels x,y

 When encountering gray level f(x,y)=i, increment counter  #i

 Histogram can be interpreted as an estimate of the probability 
density function (pdf) of an underlying random process.

 You can also use fewer, larger bins to trade off amplitude 
resolution against sample size.



Example for the histogram



Histogram Example



Histogram comparison
 Both these images present the same Histogram



Histogram comparison
 Histogram as an invariant feature



Histogram comparison



Image as a 2D sampling
 A digital image can be considered as a 2D discrete signal

1 2( , )x n n



Impulse definition

Each sequence can be considered as a sequence of impulses



The step function
 The step function a combination of impulses.



Separable sequences
 A separable 2D sequence can be written as:

 The impulse and step function are separable functions



Periodic sequences
 A sequence is periodic of period N1 x N2 if:1 2( , )x n n

The picture can't be displayed.



LTI Systems
 Linearity

 Spatial invariance

 The impulse response



Convolution
 Defined the impulse response

 The Input/Output relation is given by:



Convolution properties



Convolution examples



The 2D Fourier Transform
 The analysis and synthesis formulas for the 2D 

continuous Fourier transform are as follows:
 Analysis

 Synthesis



Separability of 2D Fourier Transform
 The 2D analysis formula can be written as a 1D analysis in 

the x direction  followed by a 1D analysis in the y direction:

 The 2D synthesis formula can be written as a 1D synthesis 
in the x direction followed by a 1D synthesis in y direction:



Separability Theorem



2D Fourier Basis Functions



The 2D Discrete Fourier Transform for periodic
signals
 The analysis and synthesis formulas for the 2D 

discrete Fourier transform are as follows:
 Analysis

 Synthesis



Separability of 2D DFT

 The 2D forward DFT can be written in matrix 
notation:

 Where 2* 1 cj r
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Separability of 2D DFT
 And

 The 2D inverse DFT can be written in matrix notation:

 where
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The 2D Discrete Time Fourier Transform

La trasformata di un segnale può essere espresso come componente reale e 
immaginaria o come ampiezza e fase.



Fourier Transform properties



Fourier Transform properties



Fourier Transform properties



Transform examples



2D DFT Example



DTFT example



Hi‐Pass Filter example
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Separable Low‐pass Filter example



Image of Albert and a low‐pass 
(blurred) version of it

 h(n)=                        (1D impulse response in both 
dimensions)



Hi‐Pass Filter

  a high‐pass filtered version of Albert, and the amplitude 
spectrum of the filter. This impulse response is defined 
by (n)‐h(n,m) where h(n,m) is the separable blurring 
kernel used in the previous figure



Band Pass Filter

 a band‐pass filtered version of Albert, and the amplitude 
spectrum of the filter. 

 This impulse response is defined by the difference of two 
low‐pass filters.



Directional filters



Circular filter example
Bessel functions



Nyquist Sampling Theorem and 
Aliasing
 Consider a perspective image of an infinite 

checkerboard. 
 The signal is dominated by high frequencies in the 

image near the horizon.
 Properly designed cameras blur the signal before 

sampling using:
 The point spread function due to diffraction
 Imperfect focus
 Averaging the signal over each CCD element.



Nyquist Sampling Theorem and Aliasing
 These operations attenuate high frequency components 

in the signal.
 Without this (physical) preprocessing, the sampled image 

can be severely aliased (corrupted):



Reconstruction using just phase or intensity

Only phase
Only amplitude



Image superposition combining phases and intesities



Filtering examples



Fourier interpretation



Filtering Examples



Fourier interpretation



Filtering examples



Filtering examples



Fourier interpretation



Filtering examples



Fourier interpretation



Linear and non linear operations

Average of nearest neighbours:
Minimum = 6; Maximum: 15
Median Filter: (6, 8, 9, 9,10, 11, 12, 13, 15) = 10



Low pass gaussian filter



Median filtering



Hi pass filtering for high frequencies

 2D case:



Example



1D derivatives
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Gradient method
 1D example
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2D case
The first derivative is substituted by the gradient

Omnidirectional detector
 Based on|ƒ(x,y)|: isotropic behaviour 

Directional detector
 Based on an oriented derivative: 

 ex.: a possible horizontal edge detector is |y|

The picture can't be displayed.
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Discrete operators for derivative estimation can be estimated 
as FIR filters.
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Finite Impulse Response Model



Discrete differential operators
 Pixel difference: luminance difference between to 

neighbour pixels along orthogonal directions.

 Separable filters
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Example: pixel difference



Separated pixel difference
• If farther pixels are chosen there is a higher noise 

rejection, and there is no phase translation in edge 
definition.
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Ex.: separated pixel difference



Roberts edge extraction 
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Ex.: Roberts method



Prewitt method
Estimation can be improved involving more samples for te

gradient operator 3x3

= vertical low pass* horizontal high pass

= vertical high pass* horizontal low pass
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• Gradient modulus = the value of the higher directional derivative
• Gradient phase = orientation of the higher directional derivative
 
Squared lattice =eight possible directions
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Ex.: Prewitt method 3x3



Laplacian
 For the 2D case the 2nd order differential operator is the 

Laplacian

 Isotropic operator
 More sensible to noise with respect to gradient

 False edges can be generated due to noise.
 Thinner edges are produced.
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Zero‐crossing 
without threshold

Just Laplacian



Can be seen as the convolution of f(n1,n2) with the impulse 
response h(n1,n2) of a linear system.
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Laplacian Discretization



4 neighbours method
 Separable normalized filter

 Unit gain for continuous component
 The sign of h(n1,n2) can be changed without changes in 

the final result (since we are looking for zeros of laplacian)
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Ex.: 4 neighbours method
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 The laplacian can be approximated with finite 

differences



Discretization examples
Prewitt method
 Not separable filter

8 Neighbours method
 Similar to Prewitt but with a separable formulation
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Ex.: 8 neighbours method



Ex.: Prewitt not separable



Noise presence
 When noise is significant these filters could not be accurate for 

diagonal edges. The Prewitt filter can work even in regions with 
high density of edges.

 Since ege are directional and noise can generate luminance 
variations, zero‐crossing for laplacian could find non‐correct 
edges.
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Ex.: Laplacian for diagonal edges



Super‐resolution (Laplacian)
First method.
 Given two neighbour pixels, mark as possible edge point  

the intrapixels points if the laplacian values in the two 
pixels have different signs.

 Assume as effective edge the point, among them, with the 
largest gradient.

 Apply this analysis to all the pixels couples.
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superresolution
Second method: analytical approach

 Approximate the continuous form of function f(n1,n2) with a 2D 
polynomial in order to describe the laplacian in an analytical way. 

 Polynomial example:

 where Ki are the weights obtained from the discrete image.

 r and c then become continuous variables associtated to a discrete 
image matrix.

 Polynomial formulation can be found with small efforts.
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Why we should use a gaussian function?
• Since the Fourier transform of a Gaussian is still e gaussian, 
• The cut‐off frequency can be expressed as a function of the width of the 

impulse response
• It has a low aliasing
• The filter is separable and isotropic at the same time

The noise sensitivity (numerous zero crossing) decrease as the 
filter strength (width) increase.
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Gaussian filtering



“LOG” operator
 The low pass gaussian filter has a variable cut‐off 

frequency.

 It follows that the standard deviation  is inversely 
proportional to the filter width.
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• Laplacian and filtering are interchangeable since both of them 
are linear
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“LOG” operator



The LOG, Laplacian of a Gaussian corresponds to the 
derivative of  a gaussian with respect to 22

The laplacian can be approximated with the difference of 
two gaussian filters with different .

Difference of gaussians



DOG application


