From 1D to 2D Signals

Lecture 9
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What is an image?

¢ Ideally, we think of an image as a 2-dimensional light
intensity function, f{x,y), where x and y are spatial
coordinates, and f'at (x,y) is related to the brightness or
color of the image at that point.

* In practice, most images are defined over a rectangle.
* Continuous in amplitude (,,continuous-tone®)
* Continuous in space: no pixels!




Digital Images and Pixels

* A digital image is the representation of a continuous
image f(x,y) by a 2-d array of discrete samples. The
amplitude of each sample is quantized to be represented
by a finite number of bits.

* Each element of the 2-d array of samples is called a pixel
or pel (from “picture element”)

* Pixels are point samples, without extent.
* A pixel is not:
e Round, square, or rectangular

e An element of an image sensor
e m An element of a display



A Digital Image is Represented by Numbers
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280 pixels + Pixel = “picture element”

« Represents brightness at one point




!n Image can be represented as a matrix

» The pixel values f{x,y) are sorted into the matrix in
“natural” order, with x corresponding to the column andy to
the row index.

e Matlab, instead, uses matrix convention. This results in
flxy) =f,» where f, denotes an individual element in
common matrix notation.

* For a color image, f might be one of the components.
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! mage Size and Resolution

200x200 100x100 50x50 25x%25

* These images were produced by simply picking every
n-th sample horizontally and vertically and replicating
that value nxn times.

* We can do better

e prefiltering before subsampling to avoid aliasing
e Smooth interpolation
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Image of different size
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Fewer Pixels Mean Lower Spatial Resolution

272 pixels

280 pixels 35 x 33 image
interpolated to
280 x 272 pixels



% or Componen§

Monochrome image

. £

R(x,v) = G(x,v) = B(x,v)

Red R(x,v) Green G(x,y)  Blue B(x,v)



ifferent numbers of gray levels




How many gray levels are required?

* How many gray levels are required?

32 levels

64 levels

128 levels

256 levels

* Digital images typically are quantized to 256 gray
levels.



Histograms

Distribution of gray-levels can be judged by measuring a
histogram:

e For B-bit image, initialize 2® counters with o
e Loop over all pixels x,y

When encountering gray level f(x,y)=i, increment counter #i

Histogram can be interpreted as an estimate of the probability
density function (pdf) of an underlying random process.

You can also use fewer, larger bins to trade off amplitude
resolution against sample size.



Example for the histogram
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Histogram Example
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Histogram comparison

* Both these images present the same Histogram




Histogram comparison

* Histogram as an invariant feature
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Histogram comparison

— Channel: Gray

Input Levels: Iﬂ |1 0o IZSS

F Y

e,
Cutput Levels: IEI |255

— Channel: Gray

Input Levels: |2|:| |1.|:u:| |255

F Y

=N
Citput Lewvels: IEI |255

s iy




age as a 2D sampling

* A digital image can be considered as a 2D discrete signal

x(n;,1, )




Oy, 1) = {0, otherwise. A S

Each sequence can be considered as a sequence of impulses

x(ny,ny) =

mpulse definition

1, n1=n2=0
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The step function

* The step function a combination of impulses.
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Separable sequences

* A separable 2D sequence can be written as:

x(ny, ny) = f(n,)g(n,)

* The impulse and step function are separable functions

o(ny, ny) = d(n,) d(n,)

u(rn,, ny) = u(n,)u(n,)



eriodic sequences

e A se#uence x(n,,n,)1s periodic of period N, x N, if:

x(n,, n,) = x(n;, + Ny, ny) = x(ny, n, + N,) for all (n,, n,)
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A LTI Systems

* Linearity
Tlax,(n,, n,) + bx,(ny, ny)] = ay,(n,, n,) + by,(n,, n,)
* Spatial invariance
Tx(n, — my, n, — my)] = y(n, — my, n, — my)

® The impulse response

y(ny,n) = Tlx(ny, n,)] = T[k ;x:_ k‘i__ x(ky, k) d(ny — ky,n, — kz)]

= i | i xX(kl,kz)T[a(nl — Ky, n — ko).



Convolution

* Defined the impulse response
h(n,, ny) = T[d(n,, ny)].

* The Input/Output relation is given by:

y(ny, ny) = Tx(n,, n)] = Z E x(ky, ky)h(n; —

= —% ko= —x

I

y(ny, np) = x(ny, ny) * h(ny, n,)

k1= —= ka= — ==

i i x(ky, ka)h(n, — k

12

la

2

fy

— k).

n, — k,).



Convolution properties

Commutativity

x(ny, ny) * y(ny, ny) = y(ny, n,) * x(ny, ny)

Associativity

(x(ny, ny) * y(ny, ny)) * z(ny, vy) = x(ny, 1y) * (y(ny, 1y) * z(ny, ny))

Distributivity
x(ny, ny) * (y(ny, ny) + z(n,, n,))

= (x(ny, ny) * y(ny, ny)) + (x(n,, n,) * z(n,, ny))

Convolution with Shifted Impulse

x(nqy, ny) * d(ny — my, n, — my) = x(ny — My, N, — Mm,)




- Convolution examples
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The 2D Fourier Transform

* The analysis and synthesis formulas for the 2D
continuous Fourier transform are as follows:

* Analysis
Fluv)= [ [ fleye 2o dy

* Synthesis

fx.y) = / / F(u,v)e ™) dy dy
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Separability of 2D Fourier Transform

* The 2D analysis formula can be written as a 1D analysis in
the x direction followed by a 1D analysis in the y direction:

= [ [ [ e mmead cmma,

* The 2D synthesis formula can be written as a 1D synthesis
in the x direction followed by a 1D synthesis in y direction:

f(x,p) = /

— 0

/ F(u,v)e’*™ du| e’*™ dv

oo




* Separability Theorem
fx.y) = f(x)g(y) — F(u,v) = F(u)G(v)

Proof:
F(u,v)

= / / £ (x,p)e 2Ry dy
f



2D Fourier Basis Functions

Grating for (k.1) = (1.-3) Grating for (k.1) = (7.1)
Real Imag Real

Zero-crossings
of sin(wgn+wym)




ge 2D Discrete Fourier Transform for periodic

signals

* The analysis and synthesis formulas for the 2D
discrete Fourier transform are as follows:

. | M—1N—1

F (k. Z Y F(m,n) \e /2K (5)
=0 n=0
M—1N-1 .
F(m,n) = Z EF (k,0)e’*" ety

k—OE 0
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Separability of 2D DFT
_ EF(k ) = _
1 Nl 1 ﬂJleF(mjn)ejzn(kﬂ) e—jZR(f%)

N A |

® The 2D forward DFT can be written in matrix
notation: 1’5 _ (W*F) W’

1 —j27zr£
* Where W* - C

rc_\E

€
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Separability of 2D DFT

o And F(mn)_
N—1][ | M=l

%\r Y Z Flk.0)e ]zn(k’”)- L2 ((f)

® The 2D inverse DFT can be written in matrix notation:
F=(WF)W
* where

C
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“The 2D Discrete Time Fourier Transform

Discrete-Space Fourier Transform Pair

X(wls (02) pew 2 2 X(nl, nz)e —jwmle —jw2n2

n=—=% nr=—x

1 0 w | |
(2,.".)2 fw1= o jw2=—w X(wls wz)e}wlnlelwznz dwl de

La trasformata di un segnale puo0 essere espresso come componente reale e
immaginaria o come ampiezza e fase.

x(nla nZ) e

X(wl, wz) — IX((DI, wz)’eje"("’"“’z) — XR(wl, (.l)z) . le((l)l, (.02).



Fourier Transform properties

x(ny, ny) <— X(w,, w,)
y(ny, ny) <— Y(w,, w,)

Property 1.

Property 2.

Property 3.

Property 4.

Property J.

Linearity

ax(ny, n,) + by(n,, ny) < aX(w, 0;) + b¥(w,, w,)

Convolution

x(ny, ny) * y(ny, ny) < X(w;, ;)Y(w,;, w,)

Multiplication

x(ny, ny)y(ny, ny) <— X(w,;, w,) ® Y(w,, mz)

1

Separable Sequence

x(n,, ny) = x,(n)x,(n,) «— X(w,, w,) = X|(0,)X;(w,)

Shift of a Sequence and a Fourier Transform
(a) x(n, — my, n, — my) — X(w,, w,)e/wmg—jum:
(h) efl!lﬂlejﬁzﬂzx(”_l, ”2) “— X(m] J—

1"'11 mZ

(217)2 Jﬂl1=--- e J;u— - ‘X(B” Bl)Y(ml _ 911 W, = H;) dﬂl dﬂz

),



Property 7.

Property 8.

I o0 — g

~Property 6.

/A NS

Differentiation

(a) —jmx(ny, ny) «<—

0X(w), w,)

0w,
0X(w,, w,)

(b) —jnx(n,, ny) «— \

dw, \

Initial Value and DC Value Theorem

(b) X(©0,0 = 3

- Qmy

f [ X(w,, ®,) do, dw,
wl=-T7 wl= =17

i x(nla ’12)

ni=-—= Q= —x

Parseval’s Theorem

(a) i i x(ny, ny)y*(n,, n,)

nj=s —% = —%

(b) 2 Z |x(nl’ n"

|=—% n2=—=

X0, @)Y *(0,, w,) dw, dw,

Ww]= —77 W)= —r

1 ™ n
- (2'"-)2 J:-:]: - J:.rr: — IX(wl’ wZ)Iz dw] d(.t)z




Fourier Transform properties

Property 9. Symmeitry Properties

(@) x(—ny, ny) <= X(—0,, w,)

(b) x(n,, —ny) «— X(0,, —w,)

(C) X(—nl, _n2) S X(_wla _0.)2)

(d) x*(ny, ny) «— X*(~w, —w,)

(e) x(n;, no): real «— X(w;, w,) = X*(—w;, —w,)
Xp(w,, w,), | X(w,, w,)|: even (symmetric with respect to the origin)
X/(ow,, w,), 6, (w,, ®,): odd (antisymmetric with respect to the origin)

(f) x(n,, n,): real and even «— X(w,, w,): real and even

(g) x(n,, n,): real and odd «— X(w,, w,): pure imaginary and odd
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2D DFT Example




DTFT exam
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Hi-Pass Filter example

L
h(n1, n2) I H(wh wg)l
(1) ° (—3). (1)
(~3) Q) (=3
-& - —
RS (RN
(a)



Separable Low-pass Filter ex"émﬁle

h(n,, n,) = h,(n)hy(n,) =

sin an, sin bn,

™™, ™,




" (qurred) version of it

E(1464—1)

* h(n)=

dimension<)

(1D impulse response in both




i-Pass Filter

* a high-pass filtered version of Albert, and the amplitude
spectrum of the filter. This impulse response is defined
by &(n)-h(n,m) where h(n,m) is the separable blurring
kernel used in the previous figure



I Band Pass Filter

e I -—

* a band-pass filtered version of Albert, and the amplitude
spectrum of the filter.

* This impulse response is defined by the difference of two
low-pass filters.



Elrectional filters




- Circular filter example

Jy (x)/x
Bessel functions
= = Ji(we V2 + nd)
h(n,, nz) = 27V + iz TR
1



% quist Sampling %Eeorem an!

Aliasing

* Consider a perspective image of an infinite
checkerboard.

* The signal is dominated by high frequencies in the
image near the horizon.

* Properly designed cameras blur the signal before
sampling using:
e The point spread function due to diffraction
e Imperfect focus
e Averaging the signal over each CCD element.



————

~ Nyquist Sampling Theofem and Aliasing

* These operations attenuate high frequency components
in the signal.

» Without this (physical) preprocessing, the sampled image
can be severely aliased (corrupted):




econstruction using just phase or intensity

Only phase
Only amplitude




H|mage superposition combining phases and intesities




Filtering examples

Original Cameraman blurred by convolution
Cameraman Filter impulse response
(11 1 11
11 1 11
Lo
25
11 1 11
11 1 1 U



ourier interpretation

oo [+ =]
i Fo — J@ W= J@ R
H(e"'ﬁ”f,{a'J "): Z Z }r[m,n]e JOxM =]y

_ - —_jm m— j@n _ L & —Jja.m : = Jar it
=2 Z 5 RS
= 21:} (1+2cosm, +2cos(2m, ))(1+2cosm +2cos(2m, ))
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Cameraman blurred horizontally
Cameraman Filter impulse response

%(1 1 [1] 1 1)

Original



Fourier interpretation

F

IHI

Cameraman blurred horizontally
Filter impulse response

%(1 1 [1] 1 1)




Filtering examples

Cameraman blurred vertically

Original

Cameraman Filter impulse response
(1)

1

<[]

1

1




Filtering examples

B e -
ity 2
e

il "l--.

Cameraman sharpened
Cameraman Filter impulse response

Original

(0 -1 0)
itl 8] 1J
0 -1 0



Fourier interpretation
H(ejmx,ejmy ) = i i f?[m,n] pJeam ey

TH—oD fl=—0

pum— 1 Py ij _.}my _}ﬁ'_}y
1 1
=2 —— COsS®

> TS cos @,




Cameraman sharpened
Cameraman Filter impulse response

Original

(0 -1 0)
-1 [5] -1
0 -1 0



- Fourier interpretation

Cameraman sharpened
Filter impulse response

0 -1 0
-1 [5] -1
0 -1 0




" Linear and non linear operations

Median Filter: (6, 8,9, 9,10, 11, 12, 13, 15) =10
Minimum = 6; Maximum: 15

Average of nearest neighbours:
(10413494 124 84+9+153+1 14619 = 133 — 10
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oW pass gaussian filter

La o 1)*31[

10
25
35
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Median flltermg




| pass f_imI-Eering for high frequencies

(;_Ax)f(x) j :F+1 -4 +1q:

o +1 0|
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Gradient method

* 1D example

(Q

0 [ >Thres  ¥es Yeso:
- - | | - —hOId? . Edge —
ax Thinning
| edge
0 l No l No
No edge No edge
Edge
-~
v
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2D case
»The tirst derivative is substituted by the gradient

If(x3): , 21 (%)
ox oy

Vf(x,y)=

» Omnidirectional detector

e Based on|V£(x,y)|: isotropic behaviour

» Directional detector

e Based on an oriented derivative:
» ex.:a possible horizontal edge detector is |0f/0y|



inite Impulse Response Model

Discrete operators for derivative estimation can be estimated
as FIR filters.

f,(ny,ny) = f(n,ny)*h,(n,n,y)
f.(n,ny) = f(ny,n,)*h (n,n,)

f(n,n,) ‘-ﬂnlﬂlfb)




! Discrete differential operators

= Pixel difference: luminance difference between to
neighbour pixels along orthogonal directions.

LU0 = f,0) = fU,k=1)
1, (k)= f(J,k) = f(j+1,k)

» Separable filters
00 0 0 -1 0
. .




Example: pixel differ
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Separated pixel difference

- If farther pixels are chosen there is a higher noise
rejection, and there is no phase translation in edge
definition.

LUk = fU.k+1) = f(j,k-1)
J,(Uk)=f(J-Lk)=f(j+1k)

- 0 -1 0
.
80 0 -
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" Roberts edge extraction

1.Usk)= (0= f(j+1Lk+1)
5,k =1, k+1) = f(j+Lk)

] E

!
[
' |
e SH an R e
C e T

O =k O
|OO©I

0 - 0
0 0



Ex.: Roberts methoc

FUJI ROCPI o




gewitt method

Estimation can be improved involving more samples for te
gradient operator 3x3

K*(ﬁ] = [f(nl +1,n, +1)—f(n1 ~Ln, +1)]+
Ox

+[f(n1 +1,n2)—f(n1 —l,nz)]+[f(n1 +1,n, _1)_f(n1 —1,n, _1)]

= vertical low pass* horizontal high pass

K*(ﬁ)E [f(nl + +1)—f(n1 +1,m, _1)]+
oy

+[f(n19n2 +1)—f(n1,n2 _1)]+[f(n1 —1,n, +1)_f(n1 —1,n, _1)]

= vertical high pass* horizontal low pass



radient estimation

 Gradient modulus = the value of the higher directional derivative
 Gradient phase = orientation of the higher directional derivative

Squared lattice =eight possible directions

L 0 1 0 1 |

Be n)—| 1 0 1 hlen)-| 1 0 I
[ 6 | 1 10

— E - / NE -

B L g
h(nl,nz)z 0 0 0 h(nl,nz)z L
L 0 [ 1

PN .



Gradient estimation

T 0 1 0 1 1
h(nl,nz): 1 0 -1 h(nl,nz)z 1 0 -1
o L1 0
= / SW
Bl o - =
e n)l-l0 06 0 hln,n,)=-1 0 1
T o1







Laplacian

e For the 2D case the 2" order differential operator is the
Laplacian

0" f(x, ) . 0" f(x,)
Ox 0y’

Vif(x,y)=V - (Vf(x,y))=

« Isotropic operator
» More sensible to noise with respect to gradient
- False edges can be generated due to noise.

» Thinner edges are produced.



Gradient + Laplacian

f(x,p) :

Vil

Gradient e
estimation
2
V f('x9 y) A 4
Yes | O(x,y) > Yes
= | threshold edgé

l No lNo
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~ /ero-crossing
without threshold

Just Laplacian
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Laplacian Discretization
VG )= fa+L, )+ AL )+ fGj+D)+ fG,j-D-4f(@,))

Can be seen as the convolution of f(n,,n,) with the impulse
response h(n,,n,) of a linear system.

sz(”pnz) = f(n,,n,)* h(n,n,)




neighbours method

* Separable normalized filter
e Unit gain for continuous component

e The sign of h(n,,n,) can be changed without changes in
the final result (since we are looking for zeros of laplacian)

1‘0 00 1o S0
ntnn)= (=1 2 =10 9
- 0. 0 0 4o 1 0
0 -1 0
]
——|-1 4 -1
4
0 1 G
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Laplacian Discretization

e The laplacian can be approximated with finite
differences

of(x,y)
Ox

= [, y)=f(J+1LE)= (), k)

LSV o £.GD= LGB £G-10) =

=S U+LE)=21(j,k)+ f(j-1k)
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Discretization examples

Prewitt metho >

* Not separable filter h(n.,n)= 1 g
- : 1 1 1

8 Neighbours method = -

* Similar to Prewitt but with a separable formulation

1‘—1 2 -1 1'—1 -1 -1] [-2 1 =2]
h(nl,nz):§ -1 2 -1 = 2 9 =% 1 4 |
-1 2 -1 |-1 -1 -1 |-2 1 -2
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oise presence

e When noise is significant these filters could not be accurate for
diagonal edges. The Prewitt filter can work even in regions with

high density of edges.

1

h(n,,n,)=—

8

-1
2
-1

>
)
5

* Since ege are directional and noise can generate luminance
variations, zero-crossing for laplacian could find non-correct

edges.



"Ex.: Laplacian for diagonal edges

FIIII RCFL



uper-resolution (Laplacian)
First method.

* Given two neighbour pixels, mark as possible edge point
the intrapixels points if the laplacian values in the two
pixels have different signs.

* Assume as effective edge the point, among them, with the

largest gradient.

* Apply this analysis to all the pixels couples.
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Iperreso

Second method: analytical approach

« Approximate the continuous form of function f(n,n,) with a 2D
polynomial in order to describe the laplacian in an analytical way.

« Polynomial example:

Fr o)oK tKriKeitKkritKrer Keci Krier Kree t Kre’
) 1 2 3 4 5 6 7 8 9

- where K, are the weights obtained from the discrete image.

- rand c then become continuous variables associtated to a discrete
image matrix.

 Polynomial formulation can be found with small efforts.



aussian filtering
s(x,y) = f(x,) *h(x, )

Why we should use a gaussian function?

» Since the Fourier transform of a Gaussian is still e gaussian,

* The cut-off frequency can be expressed as a function of the width of the
impulse response
It has a low aliasing

* The filter is separable and isotropic at the same time

h(x,y)=h,(x)h;(y)

LNl 6e
h,(x)=
2o

e
The noise sensitivity (numerous zero crossing) decrease as the
filter strength (width) increase.

2



———

‘LOG” operator

* The low pass gaussian filter has a variable cut-off
frequency.
x*+y° }

h(-xa y) = eXp|:_ 27_[02

H(o,,0,)= 21°G” exp| —

* It follows that the standard deviation o is inversely
proportional to the filter width.



” operator
g(x,») = V2(f(x,»)*h(x,))

 Laplacian and filtering are interchangeable since both of them

G

are linear

g(x,y)=f(x,y)* [Vzh(x, y)]

2 2 2 2 2

X +y —2mo ey
Vh(x,y) = exp| —

(x,7) n‘c* p{ 26°T }
: Oto.
S[Vzh(x, y)]: 216~ exp| — o2 — - > ((x)i + wi)




“Difference of gaussians

The LOG, Laplacian of a Gaussian corresponds to the
derivative of a gaussian with respect to 262

The laplacian can be approximated with the difference of
two gaussian filters with different .

{-18, =18} (-3.2, -3.2)

Y3hix, ¥) —F[93hix, ¥l




G application

DoG Edge Detect

e —

Preview

Smoothing Parameters

Radius1:(30 [ o

|

<>

Radius 2: |1.0 B | px

Normalize

] Invert

@cancel || Dok |




