Windowing

Lecture 6



Window method for FIR Design

Assume that the desired filter response Hy(e’/“) is known. Using the inverse
Fourier transform we can determine /2 4[n], the desired unit sample response.
In the window method, a FIR filter 1s obtained by multiplymng a window w|n]
with /14[n] to obtain a finite duration /i[n] of length N. This 1s required since
h4[n] will 1n general be an infinite duration sequence, and the corresponding
filter will therefore not be realisable. If /17 [n] 1s even or odd symmetric and
w(n] 1s even symmetric, then /4 [n|w(n] 1s a linear phase filter.

Two mmportant design criteria are the /ength and shape of the window w|n]. To
see how these factors influence the design, consider the multiplication
operation in the frequency domain: since /i[n] = hg[n]wn],

H(e’?) = Hy(e!?) x W(e!?).



| Window method for FIR

The following plot demonstrates the convolution operation. In each case the
dotted line indicates the desired response Hy(e’/?).




Window method

From this, note that

o The mainlobe width of W(e’/?) affects the transition width of H (e’/?).
Increasing the length N of /i[n] reduces the mainlobe width and hence the

transition width of the overall response.

o The sidelobes of W(e’/®) affect the passband and stopband tolerance of

H (e’/?). This can be controlled by changing the shape of the window.
Changing N does not affect the sidelobe behaviour.



Common windows

Some commonly used windows for filter design are

e Rectangular:

| O0<n<N
w(n] =
otherwise
e Bartlett (triangular):
(21 /N 0<n<N/2
wln] =<2—-2n/N N/2<n<N
0 otherwise




Common windows

e Hanning:

0.5—0.5cos(2nn/N) 0<n<N

wn] = 4

0 otherwise

¢ Hamming:
0.54 —0.46 cos(2nrn/N) O0<n<N
wln] =
otherwise

e Kaiser:

{Io[ﬁ(l -/ 0<n<N
wln| =

otherwise



Examples of these windows
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All windows trade off a reduction in sidelobe level against an increase in

mainlobe width. This 1s demonstrated below 1n a plot of the frequency

response of each of the windows:

0

201081D|W(€jw)|
|
— |
S 2

20]0810|W(€jw)|
|
3

— Rectangular
— - Tnangular |

AT

e

0 T
®

—— Hanning
— - Hamming

- s _—_Blackman |-
oy

| YAAA L
0 T



portant windows characteristics

Window Peak sidelobe Mainlobe Peak approximation
amplitude (dB) transition width error (dB)
Rectangular —13 /(N + 1) —21
Bartlett —25 8w/N —25
Hanning —31 8w/ N —44
Hamming —41 8w/N —53

The Kaiser window has a number of parameters that can be used to explicitly

tune the characteristics.

In practice, the window shape 1s chosen first based on passband and stopband
tolerance requirements. The window size is then determined based on
transition width requirements. To determine /14 [n] from H;(e/®) one can

sample H;(e’?) closely and use a large inverse DFT.



resolution of two cosines

) 2T
* 2 cosines separated by 4w ="

40
* rectangular windows of lengths: 20, 30, 40, 8o:

1 3
Aw = E.QM,Z.QM,.QM, Z.QM



In phase example
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Phase quadrature case
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