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Discrete Fourier Transform

The discrete-time Fourier transform (DTEFT) of a sequence 1s a continuous
function of w. and repeats with period 27 . In practice we usually want to
obtain the Fourier components using digital computation, and can only
evaluate them for a discrete set of frequencies. The discrete Fourier transform

(DFT) provides a means for achieving this.

The DFT 1s 1tself a sequence, and 1t corresponds roughly to samples, equally

spaced 1n frequency, of the Fourier transform of the signal. The discrete

Fourier transform of a length N signal x[n],n = 0,1,..., N — 1 is given by
N—-1 _
X[k] =) x[n]e /G
n=0

This 1s the analysis equation.



IDFT (synthesis equation)

The corresponding synthesis equation 1s

N—1
| .
x[n] = & > X[kl GrINEn,
k=0

When dealing with the DFT, 1t 1s common to define the complex quantity

Wy = e~ /@1/N).



nalysis and Synthesis equations

With this notation the DFT analysis-synthesis pair becomes

N—-1

X[kl =) x[n]wg"

n=>0

1 N—1
x[n] = Y XKWy "
k=0

An mmportant property of the DFT 1s that 1t 1s cyclic, with period N, both 1n the

discrete-time and discrete-frequency domains. For example, for any integer r,

N—1 N—1
X[k +rNl =Y x[p]Wy " = N xmwln w
n=0 n=0

|l

= ) x[nWy" = X[k,

n=0
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Numerical examples

* The DFT for N samples can be obtained as the
multiplication of the N samples by the W matrix

W = W]\/;n k,n=0,...,.N-1
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DFT for N=8

* The DFT for N samples seen as the projection on N
complex exponential sequences
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Example

* Consider a periodic signal whose period is [0 1 2 3]
Filtered by a FIR filter y(n)=x(n)—x(n—1)
If we want to get the DFT of the input signal we can

write:
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Example (cont.)

* While the DFT of the filter will be:

T 0 R 0
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* And the product of each element of H by the 0
corresponding element of X will be:
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! Averse DFT '

* The inverse of the W matrix will be equal to its

conjugate transpose divided by N, for example for N=4

* The iDFT for the previous example wil
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| then be:




Example (cont.)

* The previous result is exactly what we would obtain
using the convolution of the periodic signal x(n) with

h(n):

the circular convolution will give:

0)1’2‘)3)0)1)2‘)3)0)1)2‘)3) 0)1)2‘)3)0)1)2‘)3 Wlth [1) _1] e

7 [_3) 1, 1, 1]°



Periodicity assumption

since Wg = ¢ J@T/NIN — o=j27 — | Similarly, it is easy to show that

x[n + rN| = x[n], implying periodicity of the synthesis equation. This 1s
important — even though the DFT only depends on samples in the interval O to
N — 1, 1t 1s implicitly assumed that the signals repeat with period N 1n both

the time and frequency domains.



ariodic extension

To this end, 1t 1s sometimes useful to define the periodic extension of the signal
x[n] to be

X|n] = x[n mod N| = x[((n))n].

Here n mod N and ((n))y are taken to mean » modulo N, which has the value

of the remainder after » 1s divided by N . Alternatively, if n 1s written 1n the

formn =kN 4 [ for0 <[ < N, then
nmod N = ((n))y = 1.
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riodicity in the frequency
domain

Similarly, the periodic extension of X [k] 1s defined to be
X[k] = X[k mod N] = X[((k))n].

It 1s sometimes better to reason in terms of these periodic extensions when

dealing with the DFT. Specifically, if X [k] 1s the DFT of x[n], then the inverse
DFT of X [k]1s x[n]. The signals x[n] and x[n] are 1dentical over the interval 0
to N — 1, but may differ outside of this range. Similar statements can be made

regarding the transtform X [k].



roperties of the DFT

Many of the properties of the DFT are analogous to those of the discrete-time
Fourier transform, with the notable exception that all shifts involved must be

considered to be circular, or modulo V.

Defining the DFT pairs x[n]«i:»X[k], X1 [n]i}(l [k]. and xz[n]ﬂziX[k]_ﬁ

the following are properties of the DFT:

¢ Symmetry:

X[k] = X*[((=k))N]
Re{X[k]j = Re{X[((=k))n ]}
Im{X[k]} = —Im{X[((=k))n]]

[ XTk]l = [XT((=k)n]
<X k] = —<X[((=k))n]



Properties of the DFT

e Linearity: ax[n] + bxz[n]LaXl k] + bX>k].

D
e Circular time shift: x[((n — m))N]HWNk’”X[k].

e Circular convolution:
N—1
" xalmleal((n — m)) ] X1 [k] X2 k]

m=0

Circular convolution between two N-point signals 1s sometimes denoted

by x1[n] @) x[n]

e Modulation:

N-—

|—L

X[ Xo[((k = 1)) n].
[=0

D
x1[n]x;|n]<—

|
N



Time shift property

Some of these properties. such as linearity, are easy to prove. The properties

mvolving tume shifts can be quite confusing notationally, but are otherwise

quite simple. For example. consider the 4-point DFT

3

X[k] =) x[n]W;"

n=>0

of the length 4 signal x[n]. This can be written as
X[k] = x[0O)W2K + x[1IWF 4+ x[2]W2F + x[3)wF
The product W41kX [k] can therefore be written as
WX k] = x[0]W,* + x[IW2F + x[2W . + x[3)w
= W 0 + (W 4 (2w



On the circular time shift property

since Wfk = Wfk. This can be seen to be the DFT of the sequence

x[3]. x[0]. x[1], x[2]. which 1s precisely the sequence x[n] circularly shifted to
the right by one sample. This proves the time-shift property for a shift of
length 1. In general, multiplying the DFT of a sequence by WNk’” results in an
N-pont circular shift of the sequence by m samples. The convolution

properties can be similarly demonstrated.

It 1s useful to note that the circularly shifted signal x[((n — m)) ] 1s the same
as the linearly shifted signal x[n — m], where x[n] is the N-point periodic

extension of x|n].






Circular (periodic) convolution

On the interval 0 to N — 1, the circular convolution

N—-1

xs3[n] = x1[n] @@ xaln] = Y xim]xa[((n — m))N]

m=0
can therefore be calculated using the linear convolution product

N—1

x3[n] = Y xi[m]%a[n — m).

m=10

Circular convolution 1s really just periodic convolution.



cular convolution with a delayed

impulse sequence

Example: Circular convolution with a delayed impulse sequence
Given the sequences

the circular convolution x3[n] = x1[n] G x2[n] is the signal X [n] delayed by

two samples, evaluated over the range O to N — 1:




rectangular pulses

Let

| 0<n=<L-1

xi[n] = x;3[n] = |
0 otherwise.

If N = L, then the N-point DFTs are

N—-1
N k=0
Xilk] = Xo[k] = ) Wy" = |
=0 0 otherwise.
Since the product 1s
N? k=0
X;slk] = X1k X»[k] = |
0 otherwise,

it follows that the N-point circular convolution of x[n] and x> [n] 1s

x3[n] = x1[n] @) x2[n] = N. 0<n<N-1



Suppose now that x [n] and x,[n] are considered to be length 2L sequences by

augmenting with zeros. The N = 2L-point circular convolution 1s then seen to

be the same as the linear convolution of the finite-duration sequences x;[n] and

i

X2 [n]:




Linear convolution using the DFT

Using the DFT we can compute the circular convolution as follows

e Compute the N -point DFTs X [k] and X»[k] of the two sequences x [1]
and x> [n].

e Compute the product X3[k] = X [k|Xz[k] forO <k < N — 1.
e Compute the sequence x3[n] = x; [n]®x2 [n] as the inverse DFT of
X;[k].

This 1s computationally useful due to etficient algorithms for calculating the
DFT. The question that now arises 1s this: how do we get the linear convolution

(required in speech, radar, sonar, image processing) from this procedure?



ear convolution of two finite-

length sequences

Consider a sequence x [n] with length L points, and x,[n] with length P
points. The linear convolution of the sequences,

o0

x3[n] = Z xq|mlxa[n — mj,

M=—00

1s nonzero over a maximum length of L + P — 1 points:
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ear convolution of two
length sequences

Therefore L + P — 1 1s the maximum length of x3[n] resulting from the linear

convolution.

The N-point circular convolution of x;[n] and x>[n] 1s

N-1 N-1
] @ xaln] = Y ximleal((n—m)n] = 3 xalmlEaln —m] ;
m=0 m=10

It 1s easy to see that the circular convolution product will be equal to the linear
convolution product on the interval 0 to N — 1 as long as we choose
N > L + P — 1. The process of augmenting a sequence with zeros to make 1t

of a requured length 1s called zero padding.



nvolution by sectioning
Overlap and Add)

Suppose that for computational efficiency we want to implement a FIR system
using DFTs. It cannot 1n general be assumed that the input signal has a finite

duration, so the methods described up to now cannot be applied directly:

‘..Ll‘llllllillllll*‘*l.TTT...'.T“llxlllll....T.TTTTT.

x[n]

0 L 2L 3L



“ Overlap and Add (Cont.)

The solution 1s to use block convolution. where the signal to be filtered 1s
segmented into sections of length L. The input signal x[#n], here assumed to be

causal, can be decomposed into blocks of length L as follows:

x|n] = Zxr[n —rL],
r=0

where
x[n + rL] 0<n<L-1
x,|n] = |
0 otherwise.



“ Overlap and Add (Cont.)




where y,[n] 1

yv[n] = x[n] * h[n] =

s the response

yr[“] — X,—[H] * h[n]

~—

The convolution product can therefore be written as
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Overlap and Add (Cont.)

Since the sequences x,[n] have only L nonzero points and /[n] is of length P,

each response term y,[n] has length L + P — 1. Thus linear convolution can
be obtained using N-point DFTs with N > L 4+ P — 1. Since the final result 1s
obtained by summing the overlapping output regions, this 1s called the
overlap-add method.

= sseetet, *-.TTTfT'
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‘ Overlap and Save

An alternative block convolution procedure, called the overlap-save method,
corresponds to implementing an L-point circular convolution of a P-point
impulse response /2[n] with an L-point segment x,[n]. The portion of the
output that corresponds to linear convolution 1s then 1dentified (consisting of

L — (P — 1) points), and the resulting segments patched together to form the
output.



Overlap and Save (cont.)

xoln] L-(P-1) |

L—1]
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Decompose x[n] into “ ‘ H hi
overlapping sections of | L-1
length L ! i ull“““”
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Overlap and Save (Cont.)

vap[n] i
i

n%mm”'ql ﬂ

Result of circularly convolving each
section with h[n]. The portions of

each filter section to be discarded in -1
forming the linear convolution are 0 11““ l l l l l l n

indicated




