Lesson 3




The z-transform

The z-transform of a sequence x[n] 1s

o0

X(z) = Z x[n]z7".

H=—0C

The z-transform can also be thought of as an operator Z{-} that transforms a
sequence to a function:

o0

Zixnly = Y x[)=7" = X(2).

H=—0C

In both cases z 1s a continuous complex variable.

We may obtain the DTFT from the z-transform by making the

substitution z = ¢/®. This corresponds to restricting |z| = 1. Also, with
z=rel?,



rier and z transfo

20

X(re!”)= >~ x[n](re/*)™ = Z (x[n]r™"y e /e,
l=—00 H=—00
That 1s, the z-transform 1is the DTFT of the sequence x[n]r—". For
r = 1 this becomes the DTFT of x[n]. The Fourier transform

therefore corresponds to the z-transform evaluated on the unit circle:

z—plane Im

s

Re
Unit circle
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Relation between Z-Transform and DTFT

Im{z] -

S ahuit




Region of convergence

The inherent periodicity in frequency of the Fourier transform is captured

naturally under this interpretation.

The Fourier transform does not converge for all sequences — the infinite sum
may not always be finite. Similarly, the z-transform does not converge for all
sequences or for all values of z. The set of values of z for which the
z-transform converges 1s called the region of convergence (ROC).

o0

e oo |X[11]| converges.

The Fourier transform of x[n] exists if the sum )
However, the z-transform of x[n] is just the Fourier transform of the sequence

x[n]r~". The z-transform therefore exists (or converges) if

o2

Xz)= > |x[]r™"| < oo,

n=—00
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Region of Convergence

This leads to the condition
o0
Y Ixnlllz[ " < o0
n=—0ox

for the existence of the z-transform. The ROC therefore consists of a ring in

the z-plane:



Ring of Convergence in the z-plane

dh
|/

Region of
convergence

Re

In specific cases the inner radius of this ring may include the origin, and the
outer radius may extend to infinity. If the ROC includes the unit circle |z| = 1,

then the Fourier transform will converge.
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Examples of z-transform

* The z-transform of the bilateral sequence x(n) =

20(n+1)+ 6(n)+ 48(n-2) is:

X (z) = i[Zé'(n + 1)+ 5(n)+ 45(n - 2)]2_” -

—=—C0

) Zﬂ:§(n+ 1)2_” - ié'(n)z_” +4 iﬁ(n - 2)2_” —

H=——00

=2z t1+4z "
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Geometric series

* The general formula for converging geometric series is:

* For infinite series the convergence request is: |g|<1

+00 1
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Examples of the Z- transform

* The z transform for the step function u(n)

X(2)= Yl =3 =) =1

H=—<0

x(n)= 5(}?) X(z)= Zﬁ(n)z‘” =1
Causal Anticausal

x(n)=06(n—k) k>0 x(n)=8(n+k) k>0

X(z)=> 6n—k)z"=z" X(z)= niﬁ(ﬂ +k)z" =Z"



%amples of the Z- trans1!orm

x,(1)= {%ﬂzjs,m,l}

x(n)=11.2.57.0.1}

|

X(z)= ixl(ﬂ)z_” =z +2z+5+7z " +z7
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Finite causal sequence z-transform

* Given the following sequence:

* x(n) =a" [u(n) - u(n- N)J,

* Where N is an integer and « is a real constant.

(Z):ix(n - Za” =
( )n l—a"z7"

— | —oz™

S

N-1
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Example of a finite causal sequence

* Poles are the roots of the denominator

e Zeros are the roots of the numerator

i« @ @
X(Z)Z -z N+l
} o Z—

* The X(z) has a pole of order N -1 in the origin and N -1
zeros (the z = aroot pole at the denominator is
compensated by a zero in the same position).
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Example of a finite causal sequence

Im(z)

* The polynomial N: zN - oN has |
N zeros uniformly distributed

Izl =a
. . N -1 poles
along the circle of radius o. pﬁ( )\\
X — Re()

¢ The roots of the polynomial \\‘J
are at these complex

caso con N=8

pulsations.
-
z=ge Yok=0 . N-]
i e 27,
e cege k=l N
~ e 20




I!xample of an infinite causal sequence

* Find the z-transform of the following sequence:

x(n)z[l)“u(n)

2

+=0 l

wo-5{3 -]

n=0

* It is a geometric series of ratio: 1 »-1 converging at:
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Rational Z transform

* For most common cases X(z) is the ratio between two
polynomials:

X(z) = N(z)/D(z)
* Where N(z) e D(z) are two polynomials of variable z7,
of degree p. and p respectively.

* The extended notation of the two polynomials are
N(z) and D(z):

X(2)= b ihe - b e

=l —Pa
d.Eadiz b ta o




%ational / transp

® The z-transform can be expressed through the
factoriziation of both numerator and denominator:

—ﬁ PaPn Hil(z _C;-)
X )_ao( )Hi(z—d;)
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| systems analysis by the z-transform

* Time discrete LTI systems can be described as finite
differences linear equations with constant
coefficients.

v(n)=~ay(n-1)-a,y(n-2)-..—a,vn-M)+
+b0x(n)+ blx(n —1)+ +bNx(n = N)

* Applying the DTFT to each term:

Y(E?jm)= —alY(ejm)e_jm —...—aMY(ej""’)e_m” i
+ bOX(ej"’"’)+ le(e*""” )e‘f"” +..+ bNX(ej"" )e_j“"”"'r
* Remember: F(f(x—x,))=e"" F(u)
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LTI system analysis by the z-transform
* Gathering all the terms in Y(e) and X(e/®) we obtain

( *’“"Xl+ae = Fa g ) ( “’”"Xb +be e +bhe ”’N)

e Thanks to the convolution theorem:

n)=rfn)shln) = He*)=xie”Jile”)

* The frequency response H(e/®) for an LTI system defined by
finite differences equations can be defined as:

Y(ej‘"") . (bo +be +...+bNe_fﬂN)
Wel i g 2

H(e-‘f""):




| LTI system analysis by the z-transform

* Thanks to the relation between the DTFT and the
z-transform :

oo

Y.k = 3 (vlr)o™)e

H——"=00 —

i
_:—"'-’

——
DTET (x(n) ")

* Through the application of the convolution
theorem the response of the complex frequency
system Z 1s:

Y (2) = Z[x(n) *h(n)] = X(2)H(z)




——

LTI system analysis by the z-transform

. Y(‘}’jm) i (’,b +be’’+..+b 8_@\)
H(@‘J )_ el (10+ alclf:'”’+...+a:€ij)

* We know that the transfer function H(e*) is a rational

funcion, so that the transfer function H(z) is also a

rational funcion like: N(z)/D(z)

H(z)— Y(z) . (bo +b .z +...+sz_N)
X(z) (l +az +..+a,z" )

* That corresponds to the finite difference equation.

J’(”): _alJ’(” _1)_512.})(”_2)_"'_QM}}(H_M)+
+b0x(n)+ blx(n —l)+...+bNx(n ~N)
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LTI systems

* In the set of LTI system, described throught the
difference equations we can define two kinds of
systems.

* FIR, Finite Impulse Response filters: non recursive
systems where the output y(n) has a dipendence just
from the input signal x(n):

N

W)= bdn—k)

k=0
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LTI systems

¢ TIR, Infinite Impulse Response Filters: systems where
the outputs y(n) depend both from inputs and from
outputs themselves :

y(n): ibkx(n —k)—i aj.y(n — j)

* A sub-set of this kind of systems concern only
recursive filters, i.e. where the output depends just
from the actual input and from previous outputs.

()= x(n)=3 a, (1= )
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- FIR and their z-transform

e A causal LTI non recursive FIR filter

|

N-1 by
)= 3 bexln—k) 00—y
k=0 Q
>

¢ It can be described by

+
the equation: l

H(z) =bh,+bz " +...+ bN_lz_(N_l) '




Pure recursive IR filter

* An LTT causal system made of a pure IIR is a filter like:

X(n) a y(n)
() () ZCI V(H— ) '\rj -4, ]
EE + i }ﬂ-l
¢ It can be described using the

following equation. @++ < !

1

H(Z)z | .
(1+alz_l+...+aMz_M) o l

Z-I




! !TI general case for a LTI system

- (bo +bhz +...+sz‘N)

i -1 -M
(l+alz s )

H(z)

Z 7
: +
7 | D 7 |
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LTI and z-transform

* The transfer function H(z) can be thought in terms of
the roots of the polynomials of the numerator and

i N[Z) _ p_M-N (Z_cl)(z_cz)-"(z_cw)
-

® The output of a LTT system is described and analyzed
by its zeros and poles.

* For a causal system the number of zeros cannot be
larger then the number of poles .
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a <0
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Im{z}

o >0

Two compex
and conjugate
poles

and two zeros
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N

e FIR :

N-1
{%32,0?4} h(n)=">"b.5(n—j)

j=0

* From a generic input x(n), we obtain the output y(n):

+00 3
yn)= 2 hlky(n—k)= ) hlk(n—k)
ke=—a0 k=0

y(n) = x(n)+ Zx(n — 1)+ 4x(n — 3)

* Once h(n) is known the z-transform becomes:

H(z)=1+2z"+4z>




!xe rcise

* Find the output y(n) of a system with:

H(Z) =1-z7°42z"
* When the input is x(n)= u(n);
h(n)=35(n)-o(n-2)+25(n-3)

y(n) = x(n)—x(n — 2)+ 2x(n —3)




S

System stability

* The stability for a LTI system requires that the
modulus of impulse response h(n) is summable

; h(n) < oo

e If the system is causal the stability condition becomes:
in the z domain the transfer function H(z) has all the
poles inside the unitary circle of the z-plane.
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- Stability

* Multiple poles on the unitary circle induce a
polynomial grow in the impulse response.

S fatls S, Lt |
“ AN “HH

1

-
\

» Hasapoleoforder2inz=1 H(z)=
. : z(z — 1)2
the impulse response is
h(n)=n u(n): a slope function (it can be interpreted
as the convolution of a step with itself).



glh!:er design bytEe p%o loning of

poles and zeros

D(Z)_ (Z_dl)(z_dz)---(z_dM)

* The poles must be placed close to the unitary circle at
the complex pulsations for the frequencies of the input
signal x(n) that must be emphasised.

» Zeros must be placed closed to the unitary circle at the
pulsations of the input signal x(n) that must be
attenuated.

H(Z): N(Z) _ g MN (Z_Cl )(Z_Cz )'"(Z_CN)
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ldeal low pass filter

|H(ei)|

—TTE - | (O ‘}t ®

* Filter poles must be placed at pulsations of the pass
band H(ej”) || €[0,0,]

» Zeros must be placed on the unitary circle |z|=1, at the
complementary pulsations |o|€[w,, 7]



|H(e™)|




Low pass filter 1 pole 1 zero
| H()= 122 (1+z7) 1-a (z+1)

2 (l—ez?) 2 (z-0)

— a=03, H (&)
. a=03 Ha{e'”} i




s

Low pass filter with 3 zeros and 1 pole

* It is possible to emphasize the attenuation of the low
pass filter at the high frequencies inserting further
couples of complex and conjugate zeros ( for the
physical realizability of a filter).

i ()= 122 (1+z1)(1_ﬁzlxl_ﬁ*zl)

4 l1-az




h 3 zeros
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ow pass and high pass bands
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~ High pass with one pole and one zero

1.2

1.0 F
R 1,(s)= 122 1-z") _
%0.6- : 2 (l+acz_1)

04 l-a (z-1)

0.(2)- . 2 (z+a)

- 0 i1 i g
’ a=0.9

t2H



nd pass filter

|H(w)|
o o o o
o= -2 +a (=} o0
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Amplitude and phase definition

* Two samples sequence: one zero system.

Alz) =1— 227" = (2 ;zﬂ) A )

* Amplitude characteristic SN
y Py
el |

‘A(Z) S = ‘ ‘Z‘ O‘ :‘Z—ZO‘ . fm;2 r

* Phase characteristic

£A(z)_, = £(z-2,)-£(2)

z=e/?




| RS e

- Amplitude and phase characteristic

0 | 1 1 1 1 1 1 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1




/%ros for maximum an%mlmum

phase

¢ If zeros are on the unit circle they will delete true
sinusoids.

e If they are outside they will delete generalized growing
sinusoids.

* While, if they are inside they will delete generalized
decreasing sinusoids.

* The zeros inside the unit circle are minimum phase
zeros while the ones outside are called maximum
phase zeros.



Analysis for one zero

AMzy=1—7 "

* The phase behavior in the origin presents a discontinuity:

£(A(2)| .0 ) =4 (1-€7) =

. . ; 27
—jw/2 D —jw/2
e jo! (e]a)/ —e jo! ) .]

= 4(2]'6']“’/2 sin 2) =
2j 2

Tl for sinQZOi.e.a)ZO

Pveve) 2
22 7- 22 trsinZ<0ie w<0
i) v 2

* While, if we consider a zero not on the unit circle we will

obtain:

£ (1 —pz'

e )

* If the zero is inside the unit circle the phase characteristic for
the zero frequency is null and continuous.
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Reciprocal and conjugate zeros

* When a zero is really close to the unit circle minimal
variations of the sequence samples can generate high
variations in the phase characteristic.

* It is interesting to notice that two zeros reciprocal and
conjugate zeros (i.e. two sequences, each made of 2
samples, whose z-transforms present one zero in z, or
one zero in 1/ z, ) present the same amplitude response
(apart from a constant coefficient) while have
completely different phase characteristic.

‘A(Z)‘Z :‘1—202_1‘2 :‘l—zoe_j“"z =1+‘ZO‘2 —2Re(zoe_j”)

2

1

*

zZ

o

Z: —e‘ja"z - 1+‘ZO‘2 —2Re(zoe_j”) - ‘A(z)‘z

Ar(z)‘2 =1-—2z" =

9 2 2
‘ZO‘ ‘ZO‘ ‘ZO‘



The inverse z-transform

Formally, the inverse z-transtorm can be performed by evaluating a Cauchy

integral. However, for discrete LTI systems simpler methods are often

sufficient.

3.1 Inspection method

If one 1s familiar with (or has a table of) common z-transform pairs, the inverse

can be found by inspection. For example, one can invert the z-transform

|
X(z) = \ z —,

using the z-transform pair
tor |z] > |a].

b= —

z |

n <
aulnls l—az"V
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Inspection method (cont.)

By mspection we recognise that

1 fl
x[n] = (E) uln].

Also, 1f X(z) 1s a sum of terms then one may be able to do a term-by-term

mversion by inspection, yielding x[n] as a sum of terms.



Partial fraction expansion

For any rational function we can obtain a partial fraction expansion, and

1dentify the z-transform of each term. Assume that X(z) is expressed as a ratio

of polynomials in z— !

M _
. Zk:[] bi z k
=== .
2 k=0 apz=k

X(z)

It 1s always possible to factor X(z) as

bo | ..f:l(l — ¢z
ao | ..szl(l — dk-?_l),

X(z) =

where the ¢ ’s and d}.’s are the nonzero zeros and poles of X(z).



Partial fraction expansion

e If M < N and the poles are all first order, then X(z) can be expressed as

A
X(Z) - Z 1 — d;{z—l'
k=1

In this case the coefficients A are given by

Ax = (1 —dpz"hX(2)|

If M > N and the poles are all first order, then an expansion of the form

X(z) = Z B,z + Z 1 _f{:ig—l

can be used, and the B, ’s be obtained by long division of the numerator by

z=dy.

the denominator. The Ay ’s can be obtained using the same equation as for
M < N.



Power series expansion

If the z-transform 1s given as a power series in the form

o0

X(z) = Z x[n]z™"

N=—020

= ...+ x[=2]z% + x[-1]z! + x[0] + x[1]z7 L+ x[2]27% + ...

then any value 1n the sequence can be found by 1dentifying the coefficient of

the appropriate power of z 1.



inite length sequence

Example: finite-length sequence

The z-transform

can be multiplied out to give

S (T (e

2

» |l I

zf— —z—14 —z"".
+2

2

By inspection, the corresponding sequence 1s therefore

or equivalently

x[n] = 16[n + 2] — %S[n + 1] — 16[n] + %5[:@ —1].

x[n] = <

.l n=-2

—% n=-—I
—1 n=>0

% n=1
0 otherwise




Power series expansion

Consider the transform
|

I e

X(z2)

2] > |al.

Since the ROC 1s the exterior of a circle, the sequence 1s right-sided. We

therefore divide to get a power series in powers of z 7!

l4az '+a*z7%+--.

| — a.z_l) 1
| —az"!
az"1
az"l —aq?2z72
a23_2—|—
or
1 -1 2




groperties of the z-trans%orm

* Linearity

The linearity property 1s as follows:

Z
axy[n] + bxa[n]l«—aX,(z) + bX>(z). ROC contamnsRy, N R,,.



Time shifting

The time-shifting property 1s as follows:

2
x[n —ngl«—z""°X(z), ROC = R,.

(The ROC may change by the possible addition or deletion of z = 0 or
z = o0.) This 1s easily shown:

o0 OO

Y(z) = Z x[n —nolz™" = Z x[m]z—(m+nm0)

A=—00 mM=—00

M=z X (2).

I
L
L
o
[
S
3
1



“Example: shifted exponentia

segquence

Consider the z-transform

1 1
X(Z)z 1’ |Z|}Z
S

From the ROC, this 1s a right-sided sequence. Rewriting,

Y(s) — z~1 R | |
(Z)_ l_iz—l_z 1_%2_1 ’ |Z|}1

The term 1n brackets corresponds to an exponential sequence (1/4)"u[n]. The
factor z ! shifts this sequence one sample to the right. The inverse z-transform

1s therefore

x[n] = (1/4)" uln — 1].

Note that this result could also have been easily obtained using a partial

fraction expansion.



ultiplication by an exponential sequence

The exponential multiplication property is
" 2
zox[nl«—X(z/zp), ROC = |zy|R,.

where the notation |z | R, indicates that the ROC 1s scaled by |zo| (that 1s,
mner and outer radi1 of the ROC scale by |zg|). All pole-zero locations are
similarly scaled by a factor zy: if X(z) had a pole at z = z,. then X(z/z¢) will

have a pole at z = zpz;.

o If - 1s positive and real, this operation can be interpreted as a shrinking or
expanding of the z-plane — poles and zeros change along radial lines in

the z-plane.

e If 2 is complex with unit magnitude (zo = e/“?) then the scaling
operation corresponds to a rotation in the z-plane by and angle wy. That is,
the poles and zeros rotate along circles centered on the origin. This can be
interpreted as a shift in the frequency domain, associated with modulation

in the time domain by e/“0"_ If the Fourier transform exists, this becomes

e/ @0" x [H]LX(ef("’_“’f’)).
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Exponential multiplication

The z-transform pair

1
1

d—

Z
u[nl< ::1 z| > 1

can be used to determine the z-transform of x[n] = r” cos(wyn )u[n]. Since

cos(won) = 1/2e/¥0" 4 1/2e~/¥0" the signal can be rewritten as

: @0y l re 720 yln
€] = e Y ula] + - (re™ ) ).
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Exponential multiplication

From the exponential multiplication property.

| - z 1/2
E(refmﬂ)”u[n]:: P jan =1 1z| > r
| z 1/2
E(re 190y "y [n]<— Epp—r— 1z| > r.
SO
1/2 1/2
X(z) = / + / lz| > r

| — rel®oz—1 | — re—J@woz—1"

1 —rcoswyz !

|z| > r.

1 —2rcoswogz" ! 4+ r2z72°



p——————_

Differentiation

The differentiation property states that

dX(z
nx[n]i —z d( ), ROC = R,.

This can be seen as follows: since

o0

X(z) = Z x[n]z7",

H=—00

we have

_zd‘zf) = —z Z (—n)x[n]z7"1 = Z nx[n]z7" = Z{nx[n]}.




valuating convolution by z-trans.

The z-transforms of the signals x| [n] = a"u[n] and x;[n] = u[n] are

> ]

Xl(Z):Zaﬁg_”: R |Z|l’-‘-‘-|ﬂ|
n=0 -
and
> 1
X2(2)=Zg—ﬂ=l_7_l, |z| > 1.
n=0 -

For |a| < 1, the z-transform of the convolution y[n] = x[n] * x,[n] 1s

| z?2
Y(z)= = , |z| > 1.
(1—az—H)Yy(1—-z"1)  (z—a)(z—1)
Using a partial fraction expansion,
| | a
Y Z) = - . Z 15
=) l—a(l—z_l l—az_l)' 21>

SO

|

n+1
1 _a(u[n] —a"un)).

y[n] =



ommon z-transform pairs

Sequence Transform ROC
d[n] | All z
u(n] 1_;_1 lz| > 1
—u[—n — 1] 1_;_1 lz| < 1
d[n — m] z " All z except 0 or 0o
a"ufn] S 21> la
—a"u[—n — 1] l—alz_l 1z| < |al
nau[n] ey 2 > lal
—na"ul-n - 1] =y 2] < lal
a’ 0<n<N-—-1, N .—N
0 otherwise 111”2_1 2 >0
cos(won )uln] 1_21;:(0;;“)’2)_21_;_2 |z] > 1
r" cos(won )uln] 1= cos(wp)z ] |z| > r

1—2r cos(wg)z— 1 4r2z—2



elashionship with Laplace transform

Continuous-time systems and signals are usually described by the Laplace

transform. Letting z = e*’, where s is the complex Laplace variable
s=d+ jw,
we have
j— e(d—l—jw)T — edTejcuT_
Therefore

|z| = ¢T and <z =wT = 2nf/fs = 2nw/wy,
where wy 1s the sampling frequency. As w varies from oo to oo, the s-plane 1s
mapped to the z-plane:
e The jw axis in the s-plane 1s mapped to the unit circle in the z-plane.
e The left-hand s-plane 1s mapped to the inside of the unit circle.

e The right-hand s-plane maps to the outside of the unit circle.
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Examples and properties

» Complex conjugates zeros or poles:
1-2pcos(0)z '+ p’z2 =0z, = p(cos(8)+ jsin(6))

* An infinite number of zeros approximates a (stable)

| — :i(azl) lim Z(az‘l) —

m-—>—+0o0

T am+1 —(m+1)
= lim - lta a
m—>—+0 1 aas aZ




Examples and properties

—(m+1 il —(m+]
1 . . 1
= 11m ~
l-az = | g 1-az™ -
m=m
rnum ¢z _ m+l an_1+1
FOOLS : < =
| den : z. —a
The pole is deleted by a zero in the same position
Pole/Zero Plot
- o """ 51
o
1-0.9"z7" 57 ?
H(z)= : 2 - A0

1 _1 g 0 ............................... ...................... x ................ @

Do 0.92 g .:':O
~ o5} O
-0 §
| 0
2 7% 1 0.5 0 0.5 1 1.5 2




All pass filters

* An LTI with a zero and a pole in reciprocal conjugate
position is the simplest All Pass Filter:

1 Y Magnitude Response (dB)
Ealire
H — a
(Z) l+cz™! ? 0
tan(zf, / f,)—1 g
o=
tan (ﬂ-JFC / fs* ) T 1 o oD

f. = cut-off frequency
f. = sampling frequency

: 1 |
® In this case c=—— g 2
g 0 ....................................... X .................... O ...............
g-o.s - )
7] | I S B
2 1 0 1 2 3

Real Part



AII pass filters

-1 -1
——+Z ——z

H(z)= 21 — =-21 -

11—z

4H(ﬂ

A ol

z=e’?

: : 1
= 7 +atan 2(sin o, cos @ —2) —atan 2(sm @, COS a)—gj + k27

z=e’?

£H(0=0)= 7r+atan2(0,1—2)—atan2[0,1—%] =7+7-0+k27 =0 (in —7..7 range)
AH(&) = %) =7z +atan2(1,-2) —atan2(1,—%j =7 +2.68—2.03+k27 =-2.49 (in — 7.7 range)

ACH(w:ﬂ)=7z+atanZ(O,—l—2)—atan2(0,—1—%j=7z+7r—7r+k2iz=—7r (in - 7. ﬂrange)

Phase Response

Pole/Zero Plot

1 L — '
! |
S20:5
) L S— B - p—
5 E
£-05f !
2 1 0 1 2 3

Real Part

| | | | | | | | |
0 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9
Normalized Frequency (x 7 rad/sample)
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All pass filter implementation

y(n) = cx(n)+z(n—1)-cy(n-1),

x(n) @ T Xa-1)

y(n-1) } zp(n) = z(n) —crp(n—1)

y(n) = cxp(n)+zxp(n—1).
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First order low/high pass

H(z) = —;(I:I:A(z)) (LP/HP +/-)
~1
A(Z) - lz+ c:—cl
_ tan(f/f) -
~ tan(af./fs) +1°

LP/HP 112

x(n) © I o Az) J{T}@—«w{n}
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Second order all-pass filter

~c+d(l1-c¢)z7' 4272
1+d(l—¢)z7! —cz72
tan(n fp/ fs) — 1
tan(m fy/ fs) + 1
d = —cos(2nfc/fs).

A(z) =

' =

* d adjusts the cut-off frequency while ¢ the bandwidth.

y(n) = —cz(n)+d(l—-clx(n—-1)+z(n—-2)
—d(l -c)yin—1) +cy(n - 2)
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Second order all-pass filter

Magnitude Response, Phase Response, Group Delay

Magnitude in dB
&

0 0.1 0.2 0.3 0.4 0.5

)
&

Phase in degrees
I{‘J
o
o

:

o
o
o
pa—y
=
M3
w : :
o|
»
o
th



!mp:ementation Oi d seggn! or!er

all pass filter

T _x(n-'f]- - [ x(n-2)
d{1-¢) 1
n y(n)
-d(1-c)

y(n-2} y(n-1)
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Second order band pass/band reject

H(z) = ;[FA@)] (BP/BR-/+)
—c+d(l-c)z7t 272

Alz) = 1+d(l~-clz7t —cz?2
c = tan(w fp/fs) — 1
tan(27 fo / fs) + 1
d = —cos(2af./fs),

BF/BR
-+ ff‘i

x(n) T' A(z) AC-F—@—W(M
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Series connection of first anc
second order filters
bo—l—blz_l

o [f several filters are Hist-order(2) = 7 Faiz )
necessary for spectrum
shaping a series
connection of first and

by + byz7 1 + byz™?
14+ a127! +a022

H?nd+0rder (Z) =

second order filters is H(z) = ;8 = Hi(2) - Hy(z) - Ha(2).
performed

X(n) ©




P———

Linear phase filters

* A linear-phase filter is typically used when a causal
filter is needed to modify a signal's magnitude-
spectrum while preserving the signal's time-domain
waveform as much as possible. Linear-phase filters
have a symmetric impulse response, e.g.,

h(n) = h(N—l—n) n=01~1. N1
* every real symmetric impulse response corresponds to
a real frequency response times a linear phase: e ’“*
where N_1

o
2
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Linear phase filters

* o is the slope of the linear phase.
* The filter phase has the form:

O(w)=-aw
* Phase delay will be:
P(a))——@:—%— a
* Group delay will be:
¢ o -



