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Discrete Time Signals

A discrete-time signal is represented as a sequence of numbers:
x = {x[n]}, —00 < n < Q.

Here n is an integer, and x|[n] is the nth sample in the sequence.

Discrete-time signals are often obtained by sampling continuous-time signals.
In this case the nth sample of the sequence is equal to the value of the analogue

signal x,(¢) attime t = nT':

x[n] = x,(nT), —00 < N < 0.



Sampling Period

The sampling period is then equal to 7', and the sampling frequency is

fi=1/T.
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For this reason, although x[n] is strictly the nth number in the sequence, we

often refer to it as the nth sample. We also often refer to “the sequence x[n]”
when we mean the entire sequence.



Discrete Time Signals

* DTS are often depicted as:

x[-3]
x[—4] [_Z]X_
x[4]
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(This can be plotted using the MATLAB function stem.) The value x[n] is
undefined for noninteger values of 7.
Sequences can be manipulated in several ways. The sum and product of two

sequences x[n] and y[n] are defined as the sample-by-sample sum and product
respectively. Multiplication of x[n] by a is defined as the multiplication of

each sample value by a.
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Shifted sequences

A sequence y[n] is a delayed or shifted version of x[n] if
yn] = x[n = no.

with n¢ an integer.



Impulse

The unit sample sequence

1
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0
is defined as
n =0
5] = 7

| n =0.

This sequence is often referred to as a discrete-time impulse, or just impulse.
[t plays the same role for discrete-time signals as the Dirac delta function does

for continuous-time signals. However, there are no mathematical
complications in its definition.



equence representation

An important aspect of the impulse sequence is that an arbitrary sequence can
be represented as a sum of scaled, delayed impulses. For example, the
sequence

T

4 -3 -2 -1 0 lllz; §

can be represented as

x[n] = a—4é[n + 4] + a—3é[n + 3] + a_>8[n 4+ 2] + a_16[n + 1] + ayd[n]
+ai6[n — 1] + axé[n — 2] + azd[n — 3] + aq4d[n — 4].

In general, any sequence can be expressed as

\ 00

x[p) = > x[kls[n — k).

k=—o00
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Unit Step Sequence

The unit step sequence

is defined as

uln] = 5




Unit Step relation with impulse

The unit step is related to the impulse by

H

uln] = ) S[k].

k=—00

Alternatively, this can be expressed as
o0
un] =8l +8n—-1]+68n—-2]+--- = Zé‘[n — k.
k=0

Conversely, the unit sample sequence can be expressed as the first backward
difference of the unit step sequence

o[n] = uln] —uln — 1].



Exponential Sequencies

Exponential sequences are important for analysing and representing

discrete-time systems. The general form is
x[n] = Aa”.

If A and « are real numbers then the sequence isreal. If 0 < @ < 1 and A is
positive, then the sequence values are positive and decrease with increasing n:

U)le

For —1 < @ < 0 the sequence alternates in sign, but decreases in magnitude.

For || > 1 the sequence grows in magnitude as 77 increases.
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Sinusoidal sequence

A sinusoidal sequence




Sinusoidal sequences

has the form

x[n] = A cos(won + ¢) for all n,

with A and ¢ real constants. The exponential sequence Ax” with complex
o = |a|e/?0 and A = |Ale/? can be expressed as

x[n] = Aa™ = |A|e’?|a|" e’ = |Al|a|" e/ @0 TP
= [Al|a|" cos(won + ¢) + j|Al|a|" sin(won + ¢).
so the real and imaginary parts are exponentially weighted sinusoids.

When |«| = 1 the sequence is called the complex exponential sequence:
x[n] = |Ale/ @0 = |A| cos(won + ¢) + j|A| sin(wen + ¢).

The frequency of this complex sinusoid is @y, and is measured in radians per
sample. The phase of the signal is ¢.



Sinusoidal Sequencies

x[n] = A cos(won + ¢) for all n,

The index n is always an integer. This leads to some important differences
between the properties of discrete-time and continuous-time complex
exponentials:

e Consider the complex exponential with frequency (wg + 27):

x[n] — Ae](a)0+23r)n — Ael@wonpi2mn _ g,iwon

Thus the sequence for the complex exponential with frequency wy is
exactly the same as that for the complex exponential with frequency

(wo + 27). More generally, complex exponential sequences with
frequencies (wg + 27r7), where r is an integer, are indistinguishable from
one another. Similarly, for sinusoidal sequences

x[n] = Acos[(wg + 2r)n + ¢p| = A cos(won + ¢).



Differences with continuous signals

¢ In the continuous-time case, sinusoidal and complex exponential

sequences are always periodic. Discrete-time sequences are periodic (with
period N) if
x[n] = x[n + N] for all n.

Thus the discrete-time sinusoid is only periodic if
A cos(won + ¢) = A cos(won + woN + ).
which requires that
woN = 2wk for k an integer.

The same condition is required for the complex exponential sequence
Ce’/®0" to be periodic.



Continuous vs. discrete sinusoidals

The two factors just described can be combined to reach the conclusion that
there are only N distinguishable frequencies for which the corresponding
sequences are periodic with period N. One such set is

B 2k

op =~ k=0.1...N-1

Additionally, for discrete-time sequences the interpretation of high and low
frequencies has to be modified: the discrete-time sinusoidal sequence

x[n] = A cos(won + ¢) oscillates more rapidly as wg increases from O to ,
but the oscillations become slower as it increases further from 7 to 2.



Continuous vs. discrete sinusoidals

N=16

16 o ¢ -9 —¢

% 9 —¢ & 9 ¢ + 9 —¢

+

k=0

k=1

k=2

k=8

k=14

k=15



Discrete Time Systems

A discrete-time system is defined as a transformation or mapping operator that

maps an input signal x[n] to an output signal y[n]. This can be denoted as

ylnl = Tx[nl}.

— T4
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Normalized frequencies

* Given the sampling period T the sampling frequency is

1
=7
* A sampled sinusoid can be written as:
x(nT)= Acos(wnT +¢)= Acos(2z fuT + ¢) =

:Acos(zj;fn +¢)=Acos£a}n +¢):Acos(a_)n+¢)

A

A

* @ isthe normalized frequency: If the sampling
theorem is honoured then -7 <w<x



Example: Ideal delay

yin] = x[n —ngq] :

This operation shifts input sequence later by n; samples.




xample: Moving average

1 My
nl = xn -k
= T, o
——i]

For My = 1 and M, = 1, the input sequence

y[3]
]
® I

yields an output with

v[2] = el1] 4 202] + T3]

V3] = 5 (x[2] 4 3] + x4)

In general, systems can be classified by placing constraints on the
transformation 7'{-}.



Memoryless system

A system is memoryless if the output y[n] depends only on x|[n] at the same 7.

For example, y[n] = (x[n])? is memoryless, but the ideal delay

y[n] = x[n — ng] is not unless ng = 0.



Linear Systems

A system is linear if the principle of superposition applies. Thus if y,[n] is the
response of the system to the input x;[n], and y,[n] the response to x;[n], then
linearity implies

o Additivity:
Tixy[n] + x2[n]} = Tixy[n]} + T{xz2[n]} = yi[n] + ya2[n]

e Scaling:

T{axi|n]} = aT{x(|n]} = ay|n].



Linear Systems, Additivity and
Scaling

These properties combine to form the general principle of superposition
T{axi|n] + bxz[n]} = aT{xi[n]} + bT {x,[n]} = ayi[n] + Dy,[n].

In all cases a and b are arbitrary constants.

This property generalises to many inputs, so the response of a linear system to
x[n] = > agxi[n] will be y[n] = >, ax yi[n].



Time invariant Systems

A system is time invariant if a time shift or delay of the input sequence causes

a corresponding shift in the output sequence. That is, if y[n] is the response to
x[n], then y[n — ng] is the response to x{n — ny].

is time invariant, but the compressor system
yln] = x[Mn]

for M a positive integer (which selects every M th sample from a sequence) is

not.



Causality

A system is causal if the output at #n depends only on the input atn and earlier
inputs.

For example, the backward difference system

ylnl = x[n] = xfn —1]
is causal, but the forward difference system

ylnl = x[n + 1] = x|n]

is not.



tability

A system is stable if every bounded input sequence produces a bounded output
sequence:

¢ Bounded input: |x[n]| < By < o0
e Bounded output: |y[n]| < B, < 0.

For example, the accumulator

n
yinl= ) x[n]
k=—00
is an example of an unbounded system, since its response to the unit step u[n]
is
- 0 n <0
ylnl = uln] =
Z n—+1 n >0,

k=—00 | —

which has no finite upper bound.



Linear Time Invariant Systems

If the linearity property is combined with the representation of a general

sequence as a linear combination of delayed impulses, then it follows that a
linear time-invariant (LTI) system can be completely characterised by its
impulse response.

Suppose /i [n] is the response of a linear system to the impulse é[n — k] at

n = k. Since .
> x[k]Sn — k]} ,

k=—o00

the principle of superposition means that

vl =T

oo o0

yinl= ) xkKIT{Sn =kl = ) x[kl[n].

k:—w k=—OO



The convolution operation for LTI

If the system is additionally time invariant, then the response to é[n — k] is
h|n — k|. The previous equation then becomes

o0

ylnl = ) x[klh[n —k].

k=—o00
This expression is called the convolution sum. Therefore, a LTI system has

the property that given /[n], we can find y[n] for any input x[n]. Alternatively,
y[n] is the convolution of x[n] with /[n], denoted as follows:

yn] = x[n] * hin].



Convolution

The previous derivation suggests the interpretation that the input sample at

n = k, represented by x[k]5[n — k], is transformed by the system into an
output sequence x[k]h[n — k]. For each k, these sequences are superimposed
to yield the overall output sequence:
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Convolution

‘ y[n] = x[—1]h[n + 1] + x[1]h]n — 1]

T[T

n

A slightly different interpretation, however, leads to a convenient
computational form: the nth value of the output, namely y[n], is obtained by
multiplying the input sequence (expressed as a function of k) by the sequence
with values h[n — k], and then summing all the values of the products
x[k]h[n — k]. The key to this method is in understanding how to form the
sequence h[n — k] for all values of n of interest.

To this end, note that 2[n — k] = h[—(k — n)]. The sequence h[—k] is seen to
be equivalent to the sequence h[k] reflected around the origin:
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Convolution

Reflect h[-K]
[ 1 I ‘ ‘ ‘ { ! K
5 0 2




Convolution

The sequence /i[n — k] is then obtained by shifting the origin of the sequence
to k = n.

'To implement discrete-time convolution, the sequences x[k] and /[n — k] are
multiplied together for —oco < k < o0, and the products summed to obtain the
value of the output sample y[n]. To obtain another output sample, the
procedure is repeated with the origin shifted to the new sample position.



Convolution example

Consider the output of a system with impulse response

| O0<n<N-1
hin] =
0 otherwise

to the input x[n] = a”u[n]. To find the output at 77, we must form the sum over
all k of the product x[k]|h[n — k].
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Convolution example
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Convolution example

Since the sequences are non-overlapping for all negative n, the output must be

Z€ero.

y[n] =0, n <0.

For0 <n < N — 1 the product terms in the sum are x[k]h[n — k] = a*, so it
follows that

y[n]:Zak, 0<n<N-1.
k=0

Finally, for n > N — 1 the product terms are x[k]h[n — k] = a* as before, but

the lower limit on the sum is now n — N + 1. Therefore

n

yn] = Z ak, n>N-—1.
k=n—N+1



Properties of LTI Systems

All LTT systems are described by the convolution sum

oo

vl = Y x[k]hln —k].

k=—o0
Some properties of LTI systems can therefore be found by considering th
properties of the convolution operation:

o Commutative: x[n] x h[n] = h[n] * x[n]
o Distributive over addition:
x[n]* (hy[n] 4 ha[n]) = x[n] * hyn] + x[n] * han].

e Cascade connection:

——» Ny[n] P— hy[n] P———
x[n] yIn]

— > fa[n] F—| hi[n] ——
x[n] yn]

v[n] = h[n] % x[n] = hy[n] * ha|n] * x[n] = ha[n] % hy[n] * x[n].
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Properties of LTI Systems

e Parallel connection:

— hl[n]

— > ) >
x[n] y[n]
—  1p|n]

y[n] = (miln] + ha[n]) * x[n] = hp[n] * x{n].
Additional important properties are:

o A LTI system is stable if and only if § = > 7 ___ |}[k]| < oc.



roperties of LTI Systems

The ideal delay system /1[n] = §[n — n4] is stable since S = 1 < oo; the moving

average system

| M
hin| = oln —k
= T, o
1
_ ) MMt —My =n =M,
0 otherwise,

the forward difference system /[n] = &[n + 1] — §[n], and the backward
difference system i[n] = §[n] — §[n — 1] are stable since S is the sum of a
finite number of finite samples, and is therefore less than oo; the
accumulator system

n

h[n) = ) S[k]

ke=—00

B 1 n=>0
o n <0
= uln]

is unstable since S = Y 2, u[n] = oc.




FIR and IIR

Systems with only a finite number of nonzero values in /[n] are called Finite
duration impulse response (FIR) systems. FIR systems are stable if each
impulse response value is finite. The ideal delay, the moving average, and the
forward and backward difference described above fall into this class. Infinite
impulse response (IIR) systems, such as the accumulator system, are more

difficult to analyse. For example, the accumulator system is unstable, but the
IIR system

h[n] = a”uln]. a| < 1

is stable since

(it is the sum of an infinite geometric series).
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Geometric series

* The general formula for converging geometric series is:

* For infinite series the convergence request is: |g|<1

00 1




p——

Causality

Consider the system

Forward One—sample
difference delay

which has
hin] = (d[n + 1] = d[n]) = 6[n — 1]
= o[n — 1] % é[n + 1] — o[n — 1] * d|n]
= o[n] — d[n — 1].



Causality by a delay

This is the impulse response of a backward difference system:

One—sample Forward
— e >
delay difference
_ Backward
- —
difference

Here a non-causal system has been converted to a causal one by cascading with
a delay. In general, any non-causal FIR system can be made causal by
cascading with a sufficiently long delay.



Inverse system example

Backward
— | Accumulator ——m >

difference

The impulse response of this system is
hin] = uln] * (8|n] — é|n — 1]) = un| — uln — 1] = J[n].

The output is therefore equal to the input because x[n] % é[n] = x[n]. Thus the
backward difference exactly compensates for (or inverts) the effect of the
accumulator — the backward difference system is the inverse system for the
accumulator, and vice versa. We define this inverse relationship for all LTI
systems:

hn] * h;[n] = 8[n).



e e T

ICIer

"“Linear Constant Coef:
Difference Equations

Some LTT systems can be represented in terms of linear constant coefficient
difference (LCCD) equations

N M
Zaky[n — k] = Z bmx[n —m].
k=0 m=0

Example: difference equation representation of the accumulator
Take for example the accumulator

Backward
— | Accumulator +—» S

x[n yIn] difference x[n]

Here y[n] — y[n — 1] = x[n], which can be written in the desired form with
N=1,a9=1,a;, =—-1,M =0, and by = 1. Rewriting as

yin] = yln = 1] + x[n]
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Recursive Representation

we obtain the recursion representation

x|n] —I; + y [IT]

One-sample
delay

where at n we add the current input x|[n] to the previously accumulated sum

yln —1].



erence equation for
average

oving

Consider now the moving average system with M; = 0:

hin] = (u[n] —uln — M —1]).

M, +1
The output of the system is

R

= g L)

whichisa LCCDEwith N =0,a9 = l,and M = M, b;, = 1/(M, + 1).



%ifference equation for moving

average

Using the sifting property of é[n],

|

i) = -
2>+ 1

(0[] —d[n — My — 1]) * u[n]

SO

x1[n]

Attenuator +
— Accumulator ——»
x[n] 1/(My + 1) f y[n]
> (My + 1)

sample delay
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Difference Equations

Here xq{[n] = 1/(M> + 1)(x[n] — x[n — M> — 1]) and for the accumulator
y[n] — y[n — 1] = x1[n]. Therefore

vl =yln 1] = (x[n] = x[n — Mz —1]).

M> + 1

which is again a (different) LCCD equationwith N = 1,ay = 1,a; = —1,
bo = —bpy41 = 1/(My + 1).



ifference equations

As for constant coefficient differential equations in the continuous case,
without additional information or constraints a LCCDE does not provide a
unique solution for the output given an input. Specifically, suppose we have
the particular output y ,[n] for the input x ,[n]. The same equation then has the
solution

vin] = ypln] + yaln].

where yy[n] is any solution with x[n] = 0. That is, y;[n] is an homogeneous
solution to the homogeneous equation

N
> agypln —k] = 0.
k=0
It can be shown that there are N nonzero solutions to this equation, so a set of
N auxiliary conditions are required for a unique specification of y[n] for a
given x[n].

If a system is LTI and causal, then the initial conditions are initial rest
conditions, and a unique solution can be obtained.



ntation

"Frequency domain Repre
for DTS

The Fourier transform considered here is strictly speaking the discrete-time
Fourier transform (DTFT), although Oppenheim and Schafer call it just the

Fourier transform. Its properties are recapped here (with examples) to show
nomenclature.

The Fourier Transform of the impulse response is called the frequency
response:

H(e'®)= Y h[kle /¥

k=—o00

H(e/”) = HR(e’) + jH1(e/”) = |H(e/®)]e/ M.



Frequency response for delay

Consider the input x[n] = e/®" to the ideal delay system y[n] = x[n — nq]:

the output is
y[n] —_ e]a)(n‘_n‘d) — e_Ja)n(f eja)n.

The frequency response is therefore
H(e/?) = e=/@Nd.

Alternatively, for the ideal delay A[n] = é[n — ng],

0. @)
H(e!?) = Z §[n —ngle /®" = e~ I®Ma.

n=—0oo

The real and imaginary parts of the frequency response are



Delay: amplitude and phase

Hg(e’?) = cos(wny) and Hy(e/?) = sin(wny), or alternatively

[H(e’)| = 1

<H(e'?) = —wny.

The frequency response of a LTI system is essentially the same for continuous
and discrete time systems. However, an important distinction is that in the
discrete case it is always periodic in frequency with a period 27

00
H(ej(co+23r)): Z h[n]e—j(a)—FZn’)n

n=—00

Oo . B
— Z h[n]e—qune—]2zrn

R=—00



Delay: amplitude and phase

= Y h[n]e™®" = H(e’®).

n=—0~oo

+j2nn

This last result holds since e = 1 for integer n.

The reason for this periodicity is related to the observation that the sequence
{e_j"m} , —00 <N < 00
has exactly the same values as the sequence

{e_J(erz”)”} , —00 <N < 0.

A system will therefore respond in exactly the same way to both sequences.
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ldeal filters for discrete signals

The frequency response of an ideal lowpass filter is as follows:

Hlp (eja))

Only required part
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ldeal filters for discrete signals

Due to the periodicity in the response, it is only necessary to consider on
frequency cycle, usually chosen to be the range —7 to 7. Other example:
ideal filters are:

th (eja))

Highpass

Bandstop
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ldeal filters for discrete signals

pr (ejw)

Bandpass

T T )

In these cases it is implied that the frequency response repeats with period 27
outside of the plotted interval.



eguency response o oving
average system

The frequency response of the moving average system

1
h[?’l] _ M| +M>+1 _Ml =n= M2
0 otherwise
is given by
. 1 eja)(M2+M|+l)/2 - e—ja)(M2+M1+1)/2 Jjo(Ma—M{+1)
H(e-"”) = - e 2
My + M, + 1 | —e— 7@
1 eJOoM2+M1+1)/2 _ p—jo(Ma+M1+1)/2 jo,my—m))
M+ M+ w2 — g—jal2 w2
1 sinfo(M, + M» + 1)/2] _JoMa=My)
— (4 .

My + M, + 1 sin(w/2)
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Continued

* Since
e—ja/Z _eja/Z

- . e ooy
l-e —¢' (e 0 )=e’“ 2] . =
2]

— —24in (%j eja/Zj — _2gin (%j eja/2ej7r/2 -

a—7
ey a2
- ZSln(—jef“/zef”/ze m 28111(—)6 2

2



Continued

M, : M +M, . : f e—ja)(M1+M2+1) |
Z oo Z o joM; _ e’le _
— .a)
n=—M1 n=0 1 %% e ]
_ja)(M1+M2+1) ja)(M1+M2+1) —ja)(M1+M2+1)
e 2 e 2 —e 2 :
= e]a)M1 o
- T =
e 2 o2 _p 2
| 1 0
- 9) MM oM
e
= e 2
@



!equency response o%ovmg

average system

For M; = O0and M, = 4,

1 /WW\

_j-[_z_?fgz_”

27 -7 0 o4 27
0

[H(e’)]

o

= 3

<H(e’?)




iscrete Time Fourier
(DTFT)

The discrete time Fourier transform (DTFT) of the sequence x[n] is

storm

o

X(e’?) = Z x[n]e™/®".

n=—0oo

This is also called the forward transform or analysis equation. The inverse
Fourier transform, or synthesis formula, is given by the Fourier integral

1 [~ o
x[n] = ﬂ[ X(e’?)e!*"dw.
—7

The Fourier transform is generally a complex-valued function of w:

.;'w)

X () = Xr(e!®) + jX1(e7?) = |X(e/®)|e <X




screte Time Fourier
(DTFT)

The quantities | X (e/¢)| and <tX(e/®) are referred to as the magnitude and

phase of the Fourier transform. The Fourier transform is often referred to as

storm

the Fourier spectrum.

Since the frequency response of a LTI system is given by

H(e/?) = i h[kle 7k,

k=—00

it is clear that the frequency response is equivalent to the Fourier transform of
the impulse response, and the impulse response is

1 ™ o
hin] = —[ H(e’?)e!*"dw.
2w J_ .




screte Time Fourier
(DTFT)

A sufficient condition for the existence of the Fourier transform of a sequence

storm

x[n] is that it be absolutely summable: > >° ___|x[n]| < oo. In other words,
the Fourier transform exists if the sum ) 7 ___|x[n]| converges. The Fourier

transform may however exist for sequences where this is not true — a rigorous
mathematical treatment can be found in the theory of generalised functions.




Symmetry properties

Any sequence x[n] can be expressed as

x[n] = x.[n] 4+ x,[n].

where x.[1] is conjugate symmetric (x.[n] = x)[—n]) and x,[n] is conjugate
antisymmetric (x,[n] = —x}[—n]). These two components of the sequence
can be obtained as:

veln] = (3] + ") = [n]
Yoli] = 5 (xlr] — X [on]) = ][]

If a real sequence is conjugate symmetric, then it is an even sequence, and if
conjugate antisymmetric, then it is odd.
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example

o x[15 31] — . 1/2,-1,2,-1,1/2]
T x,=[-1/2,2,0,-2,1/2|

o

O



Symmetry properties

Similarly, the Fourier transform X(e/¢) can be decomposed into a sum of

conjugate symmetric and antisymmetric parts:
X(e7”) = Xo(e!”) + Xo(e?).
where
Xe(el®) = Z[X(@) + X* ()]
Xo(e™) = S[X(e) = X*(e)]

With these definitions, and letting

X(e7?) = XR(e’”) 4 jX1(e7?).



p——

Symmetry properties

Sequence x[n]  Transform X(e’/?)

X*n] X*(e77?)
X*[—n] X*(e7?)
Re{x[n]] Xe(e’?)
JImix[n]; Xo(e7?)
Xe|n] Xr(e’?)

Xoln] jX1(e??)




Symmetry properties

Most of these properties can be proved by substituting into the expression for

the Fourier transform. Additionally, for real x[n] the following also hold:

Real sequence x[n] Transform X (e/®)
x[n] X(e/?) = X*(e™/?)
x[n] Xr(e/?) = Xg(e™/®)
x[n] Xr(e/?) = =X (e7/)
x[n] X ()| = [X(e™/®)]
x[n] aX(e/?) = —<aX(e™/?)
Xe[n] XRr(e’?)

Xo[n] JXT (ejw)
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Properties of the Fourier transform

Sequences x[n], y[n]  Transforms X(e’/?), Y(e/®) Property
ax[n] + by[n] aX(e’®) 4+ bY(el?) Linearity
x[n—ng| e~IPma X (el?) Time shift
/@0 xn] X (e/(@=®0)) Frequency shift
x[—n] X(e™/?) Time reversal
nxnj j%‘;’:ﬂ Frequency diff.
x[n] * y[n] X(e’?)Y(e’?) Convolution
x[n]y[n] = [T X(e/?)Y(e/@=D)d6  Modulation




Useful transform pairs

Sequence Fourier transform
a[n] 1
d[n — ny] e~ J®no
1 (—o0c <n < o) Y he o 2m8(w + 27k
auln] (Ja| < 1) 1—a;—.fw
uln] —— + Y e W@ + 27k)
(H + 1)61”%[1’1] (|a\ < 1) m
sin(wen) X(e/@) = o] < w,
mn
0 we < |w| <7
] = | O0<n<M sin[c;)iflfg)—/kzl))/Z] o—joM/2
0 otherwise

el@on Y oo 278 (0w — wo + 27k)




