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Continuous Signals

* A continuous-time signal is a complex function of a
real variable that has, as a codomain, the set of

complex numbers.
s(t),t e R

* Real signals: s(t) =s*(1)



Periodic Signals

* Periodic signals:  s(r+T,) =s(1).
where the condition is satisfied for T, and for kT,
where k is an integer.

* Periodic repetition formulation:
+00

s(t) = Z u(t —nTp) = repr, u(tr),

n=—0oc

uml/\
0 T, r

repy, u(t) I/\
0 T, 27, 3T, 4T, ’




Continuous Signals

* Asignal is even if: s(—t) =s(1),
* Asignal is odd if:

s(—t) = —s(t)

L s(t)=: b s()=—s(-

/\/0 \/\ AN ALY
VAV

* An arbitrary signal can be always decomposed into the sum
of an even component s,(t) and an odd component s,(t)

. s(1) = 5e(t) + 50(1),

Se(l‘)=l s(t)+s(—=t1)|, So(r)=l s(t) —s(—=t1)|.
) P
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Continuous Signals

* Causal signal: s(r)=0 forr <0.

e Time shift: St (1) = s(t —19)
A
f& s(t—19)
0 ] t:) ) t>
+00
® AI'ea: area(s) :[ s(t)dt.
—00
| T
® Mean value: my= lim — [ s(t)ds

T—oo 2T J_71
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Continuous Signals

+00

* Energy: Es=[_ [s(r)|* dr.

o 1T 5
* Specific power: Fs= lim — [ Tls(r)l dr.
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Definitions over a period

to+T, |
® Mean value over a period: ~ ms(Tp) = — f s(r)d.
P Jio
; to+Tp )
* Energy over a period: ES(TP)=/ ()| dr.
Io

: | _ f0+Tp 7
* Power over a period: Ps(Tp) = 7 Es(Tp) = T—f |s(1)]”dr.
P P Jh



Example of a signal

* A sinusoidal signal:

4
5(t) = Ag cos(wot + ¢g) = Ag cos(27 fot + ¢Pg) = Ag COS(2JT? + ¢0)
0
e [t can be written as: s() = A cos ¢ cos wot — Ag sin g sin wof,
e Using Euler’s formulas:
eix + e—ix eix . e—ix

COBX = . SINX =
2

Z z1

e It becomes:

| L
S(f) — AO COS((UOT ks ¢0) — ;AOeI(WOf'f‘GbO) + ;Aoe—l(w()f‘i'ﬁbO).
e it can be written as the real part of an exponential signal:

s(1) =RA | A= Age'?.
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Some useful signals

® The step signal: s¢)=Aq1( —1y).
* Where the unit step function is:

0, forx <0,
](l): orx < 1(0)=%
I, forx > 0.
* The rectangular function:
I, for|x| <31,
rect(x) = o f
0, for|x|> 5,
1 Aorecl(%)
o 1 rect(x)
| Aot
4 0 L g 0 t:) t-

A
A\



Some useful signals

| —|x| for|x| < I;

® ¢ . 17 3=
A triangular pulse:  triang(x) { " for x| > 1.

e The impulse; §(t) is assumed to vanish for # # 0

o0 o0
/ S(t)ydr =1, ] (t)s(t)dt = s5(0).

—00 —00
e Can be seen as a limit as D tends to zero.

rp(¢) = %rect(%), (1) = lim rp(1).

o0 | D2
limf rp(t)s(t)dt = lim —/ s(t)dr =5(0),
D—0J_~o D—0 D —-D/2



On the impulse

] s(t)(S(r—to)dt:f s(t+19)d(r)dr = s(1p).

—00 —00

00 00 00
[ 8(—r)s(r)dt=] 5(T)S(—r)dt=s(0)=[ d(r)s(r)dr,

—00 —00 —00
+00
s(t)=f s(u)d(t —u)du.
—00

T ad(t—1)

R




The sinc pulses

. I —1o , sinmx
Ag sinc ; sinc(x) =
Y i TX
: : : | sinmx
® The periodic sinc  sincy(x) = ———=—.
N sin N
L ol 1 2
sincs (x)
0\1 3 /5\ \/m




Convolution

* Given two continuous signals x(t) and y(t), their
convolution defines a new signal:

+00
)= [ X(u)y(t —u)du.

—00

* This is concisely denoted by: s=xx*y
e [fwedefine: z(u)=zu—1)=y(—(u—1) =y —u),

+00

The convolution becomes: (1) = f x(u)zs (u) du.
—00



Convolution

In conclusion, to
evaluate the
convolution at the
chosen time t, we
multiply x(u) by z,
(u) and integrate
the product.

b)

d)




Convolution

* In this interpretation, we hold the first signal while
inverting and shifting the second.

* However, with a change of variable v = t — u, we obtain
the alternative form

+00
s(t) =f X(t—u)v(u)du,

—00

in which we hold the second signal and manipulate the
first to reach the same result.



Convolution example

* We want to evaluate the convolution of the rectangular

pulses |
I [
x(t) = A 1'ect(E), y(t) = Ap rect(ﬁ).
A 4 4
(1) (1) G
—2D D 1 I} D 1 Al D D 3D 1
0, ift <—3Dort>23D;
) A1A>»(t+3D), if —3D <t <—D:;
S = 4
A1A»2D, if —D<t<D:;
| A1A2(3D —1t), if D<t<3D.
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Convolution example

* We evaluate the convolution of the signals

—

x(t) = Ag rect(%), y(t) =u(r)..

1 1 | 5@ 02D

Y
Y
Y

0, ift < —D:
s(t)=3Ao(t+ D), if —D <t <D;
\AO?.D, ]fr>Da
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Convolution of a periodic signal

* The convolution of two periodic signals x(t) and y(t)
with the same period T, is then defined as:

A to+T,
xxy(t) = [ x(u)y(t —u)du.
t

0

* where the integral is over an arbitrary period (¢, t,+T),).
This form is sometimes called the cyclic convolution
and then the previous form the acyclic convolution.
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The Fourier Series

* We recall that in 1822 Joseph Fourier proved that an
arbitrary (real) function of a real variable s(t), t E R,
having period T, can be expressed as the sum of a
series of sine and cosine functions with frequencies
multiple of the fundamental frequency F =1/T,, namely

o0
s(t)=Ag + Z[Ak cos 2wk Ft + By sin27k Ft).
k=1
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The exponential form

* A continuous signal s(t), t €R, with period T}, can be
represented by the Fourier series

00
Z ; I
S(t)= Snelzﬂ'ﬂ.Ff, F=T_.
P

n=—0Q

* Where:

| to+T,

— . s(e Tt g peZ.
TP o

Sn
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Some properties of the Fourier Series

e Time shift:

x() =s(t—1) v X,=S,e*nFh

® Mean Value:

| t0+T,
mg(T)p) = — [ s(t)ydt = Sp.
TP 10
e Parseval’s theorem:
| 10+T), +00
P — so)Pde= 3" 1S4
Tp o n=—00



Examples

* A real sinusoid:

s(t) = AgcosQufor +90) ——  s(t) = = Age' e F! 4 lee_i‘me_iz”F'.

¥

I , 1 :
31 = ;Aoe"“’, 3= ;Aoe_""o, S, =0 for|n|#1.

—

i
2 2

* A square wave:

— t—nT t
)= Z Aorect( p) =A0rePTp rect(—), 0<d<|

n=—00 d7, dTp
4
| %dTP .
Sp=— f Age™2mnEr gy, S, = Sosinc(nd), Sp= Aod.
Tp J_lar,
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The Fourier Transform

* An aperiodic signal s(t), t ER, can be represented by
the Fourier integral:

+00 )
s(t)=[ S(fe?tdf, teR,

—00

* And
+00
S(f)=f s()e Pt dr,  feR.

—00

F F-1
s(t) ——> S(f), S(f) ——— s(v).
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Interpretation

* In the Fourier series, a continuous-time periodic signal
is represented by a discrete frequency function

S =S(nF).

¢ In the Fourier Transform, this is no more true and we
find a symmetry between the time domain and the
frequency domain, which are both continuous.

* In the Fourier Transform a signal is represented as the
sum of infinitely many exponential functions of the

form >
[S(f)df]e*™!, feR
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Properties

* For real signals the Fourier Transform has the
Hermitian Symmetry:

SEf = S
* Time shift:
(¢ — to) = S(f)e izt

* Frequency shift: -
S(f — fo) — s(t)et?™hot

e Convolution: 7
x(t) xy(t) > X(HHY(f)

- X(©Y(O =X = V()



Examples

* Rectangular pulse and sinc function

|
D A | |
S(f) = Ao [ 271 gy = A0 (oinsD _ ins)
-iD —12nf

sintfD

= Ap

nf

Agrect(t/D) 7 AgDsinc(f D).
S(t) = AgD sinc(t D) ——— s(— f) = Agrect(— f/ D).

* Impulses
+00 _ ]
S(f) = f 8(t — tp)e 2 4t = 727/ N0,

—00

8(t — tg) ——— ei27f10




Examples

* Periodic signals

1, . : |
cos2n Ft = ;(e'znn 4 o2k — 3[5(f — F)+38(f+ F)],

=

L, . 1
sin2m Ft = ?—i(eﬂ"“ —eizwFry__ % 58(f = F)=s(f + F].

+00 . T +00
s(t) = Z S, ei2xnFt __— Z S,8(f —nF).

n=—00 n=—00
* Signum signal

5 3
sen(r) -

imf
* Step signal

I F 1
(1) = 5 + 5 sgn(t) ——— 53(f) +

2 2 f’



" Representation of a CT Signal Using Impulse Functions

. : -
Recall our expression for a pulse train: p(0)

pty=>6(t—nT) T T T T Tt

A sampled version of a CT signal, x(t), is:

x (1) = x(t)p(t) = ix(t)é'(t —nT)= ix(nT)é'(t —nT)

n=—oo =

This is known as idealized sampling.
We can derive the complex Fourier series of a pulse train:

p(t) = cheik‘”°t where @, =27/T

k=—w

1 T/2 - 1» T/2 - 1 . 1
c, =— De ™' dr=— | S(e ™ ™™ dt =—|e ™| =—
k T_J/f” T_J/Z() -

(e 0]

p0)=73, %eik%t

k=—00



ier Transform of a Sampled Signa

The Fourier series of our sampled signal, x, (?) is:

0

x,(t)=p)x()= Z % x(t)e Jkaogt

k=—00
Recalling the Fourier transform properties of linearity (the transform of a
sum is the sum of the transforms) and modulation (multiplication by a
complex exponential produces a shift in the frequency domain), we can
write an expression for the Fourier transform of our sampled signal:

co

Xs(ejw) v T{p(t)X(t)} =F z %X(t)ejkwot = % z T{x(t)ejka)ot} =

k=—0o0 K
- i X (e (@—kwo)
Tk:—oo X

If our original signal, x(t), is
bandlimited:
‘X(ej"’ )‘ =0 for w>B w/ N/, / :




al Reconstruction

Note thatif , >2B , thereplicasof X(e’”) do not overlap in the
frequency domain. We can recover the original signal exactly.

x(1) = x(H)p(r) x(1)

- H(w) -

Lowpass filter

The sampling frequency, » =2B , isreferred to as the Nyquist sampling
frequency.

There are two practical problems associated with this approach:
» The lowpass filter is not physically realizable.

» The input signal is typically not bandlimited.



lasing

Recall that a time-limited signal cannot be bandlimited. Since all signals are

more or less time-limited, they cannot b

e bandlimited. Therefore, we must

lowpass filter most signals before sampling. This is called an anti-aliasing
filter and are typically built into an analog to digital (A/D) converter.

If the signal is not bandlimited distortion will occur when the signal is
sampled. We refer to this distortion as aliasing:

IX(w)l }

X, (@)l 4

= (1)

—4B  —3B 2B —B




ersampling and Oversamp

g of a Signal

F
Original Signal 4
- ; : -
s F. =28
Sufficiently Sampled I s
-l 1 | | | /|\/|\/|\4 I
48 3B 2B B E 2B =B 4B
. = 2.5B
Oversam pled L ey
o .A/\ | /l\A/\/\l o
48 3B 2B B E 2B =B 4B
fo = 158
Undersampled (Aliasing) 4 X1
-l 1 | /><4\1/|\4 Ll 1
48 3B 2B B E 2B =B 4B
F R
-l L1 L | L | | L1
-8 -3B -zB -B BE 2B 5B 4B
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Quantization

* Quantization makes the range of a signal discrete, so
that the quantized signal takes on only a discrete,
usually finite, set of values.

* Unlike sampling (where we saw that under suitable
conditions exact reconstruction is possible),
quantization is generally irreversible and results in loss
of information.

* It therefore introduces distortion into the quantized
signal that cannot be eliminated.



uantization

* With L levels, we need N = log, L bits to represent the
different levels,

* conversely, with N bits we can represent L = 2" levels.

Unquantized signal 32 levels
1 T T 1 T
(
081 {1 o8t r| l]
J |
I\ I L
0.6 / \ 1 o6} JH ) .
I\ I J_'
04r s I". | oal o )
|I ml
| / f
0.2f \ 1 0.2t 1
| IJH
0 . . 0 . .
0 0.5 1 15 0 0.5 1
16 levels 8 levels
1 1 '
0.8f 1 0.8t 1
06| ; N HH . { 06} J—\_LI—I—IJ ' ]
|_ | [ |
0.4r N L - |L|1 ‘J 0.4r L (
0.2+t L 0.2t 1
0 . . 0 . .
0 0.5 1 15 0 0.5 1




Uniform quantization

(2L-)M |

2L

A




Uniform quantization

lg
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€
Lol
@
-




Non uniform quantization

Onginal image, 256 gray levels Histogram of original image and quantizer breakpoints

- b _

2500

2000 : L 1

1000

500

0 50 100 150 200 250
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Uniform vs. non-uniform quantization

Uniform quantization, 4 levels Mon-uniform quantization, 4 levels




