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Continuous Signals

* A continuous-time signal is a complex function of a
real variable that has, as a codomain, the set of

complex numbers.
s(t),t e R

* Real signals: s(t) =s*(t)



Periodic Signals

* Periodic signals:  s(r+T,) =s(1).
where the condition is satisfied for T, and for kT,
where k is an integer.

* Periodic repetition formulation:
+00

s(t) = Z u(t —nTp) 2 repr, u(7),

n=—0oo

um I/\
0 7, t

repr,, u(t) IA
0 T, 2T, 3T, 4T, :




Continuous Signals

* Asignal is even if: s(—t) =s(1),
* Asignal is odd if:

s(—t)=—s(t)

T s(t)=s(—1) '

N A
MGV
* An arbitrary signal can be always decomposed into the sum
of an even component s,(t) and an odd component s(t)

b s(t)=—s(—1)
VA

- s(1) = 5¢(t) + s0(1),

I |
Sell) = ;[s(r) - s(—l‘)]‘ Esll) = ;[5(1‘) — s(—r)].
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Continuous Signals

* Causal signal: s(r)=0 forr <0.

e Time shift: St () = s5(t —1p)
A
/\K s(t—to)
0 o g
+00
® Area: area(s) =[ s(r)dr.
—00
1 T
e Mean value: my= lim — [ s(r)ds

T—oo 2T -
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Continuous Signals

+00

° Energy: Es=[ [s(0)| dr,

1

T
L] L] . 2
* Specific power: bo= lm —— / Tls(r)| dr.



Definitions over a period

to+T),
® Mean value over a period: ~ ms(Tp) = — [ s(r)dr.
P Jip

: to+Tp
* Energy over a period: Es(Tp) =/ s dr.

10

7 ] f0+Tp 5
* Power over a period: Fs(Tp) = = Es(Tp) = T—[ [s(0)|"dr.
p p Jip



Example of a signal

* A sinusoidal signal:

t
s(t) = Ag cos(wot + ¢po) = Agcos(2m fot + o) = Ao cos(znT S8 ¢0)
0
e [t can be written as: s() = Ag cos ¢y cos wot — Ag sin ¢g sin wot,
e Using Euler’s formulas:
i —jx jix

e +e’ : e’ —
COS X = s , Sinx =

e It becomes:
s(1)=A, cos(wyt+¢, )=%Aoej(“’°+¢°) +%Aoe_j(a’0+¢o)

e it can be written as the real part of an exponential signal:

s(1)=R{de™|, A=de
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Some useful signals

* The step signal: s()= A1 —1).
* Where the unit step function is:

0, forx <0,
I(\): orx < ](0):%
I, forx = 0.

* The rectangular function:

i 1
I, for|x| <3,

rect(x) = :
0, for|x|> 7,

'y t—1,
Ag rect ( e )

A

[ rect(x)

(S8
o=

A
s 4




Some useful signals

Il —|x|] for|x| <1;

‘ o ° 1 » 2 a —
A triangular pulse:  triang(x) {0 for x| > 1.

e The impulse: §(t) is assumed to vanish for 7 # 0

o0 o0
/ S(t)ydr =1, f S(t)s(t)dr =s5(0).
0@

_w =
e Can be seen as a limit as D tends to zero.

| t _ )
rp(t) = BreCt(B)‘ o(t) = ll)lllloro(t).

00 l D/2
lim f rp(t)s(tr)dr = lim —/ s(t)dr =s5(0),
D—0 J_~o D—0 D -D/2



On the impulse

o @] o0
/ s(r)3(r—t0)dr=[ s(t+19)d(r)dr = s(1g).

—00 —00

(o 0] 0.0 O
/ 8(—t)s(t)dr=[ 5(1‘)s(—t)dt=s(0)=[ S(t)s(t)dt,

—C0 —0Q —00
+00
s(t)=] s(u)d(t —u)du.
—00

1 o d(t—tp)

=]




The sinc pulses

. t —1Ip , Sin T x
Ag sinc T ’ sinc(x) =
TX
() L] [ ] l 1 Tr
* The periodic sinc  sincy(x) = ———~
N sin N

>
>




Convolution

* Given two continuous signals x(t) and y(t), their
convolution defines a new signal:

+00
s(t) = f xX(u)y(t —u)du.
—00

* This is concisely denoted by: s=ux*y
o [f wedefine: z(uw)=z(u—1t)=y(—(u—1)) =yt —u),
+00

The convolution becomes: s(t) = / x(u)zg (u) du.
—00



Convolution

In conclusion, to
evaluate the
convolution at the
chosen time t, we
multiply x(u) by z,
(u) and integrate
the product.

d)




Convolution

* In this interpretation, we hold the first signal while
inverting and shifting the second.

* However, with a change of variable v = t — u, we obtain
the alternative form

+00
s(t) =f xX(t—u)y(u)du,

—00

in which we hold the second signal and manipulate the
first to reach the same result.



Convolution example

* We want to evaluate the convolution of the rectangular

pulses |
I I
x(r) = A rect(E), yv(t) = Aj rect(ﬁ).
4 4 4
x(1) (1) . |50
;) D t D D 1 “3D D D it
[0, ift <—3Dort>3D:
) A1A>»(r+3D), if —3D <t < —D;
Ay —
A1A22D, if —D<t<D;
| A1A2(3D —1t), if D<t<3D.
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Convolution example

* We evaluate the convolution of the signals

x(t) = Ay rect(%), y(t) =u(r)..

| IR0 T »0 [ s

Ag 1 /

-D D ! t —-D i) !

Ap2D

A J
Y
Y

0, ift < —D:
s(t)={ Ao(t+ D), if —D<t < D;
\AO:’.Dg 1ft>D$
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Convolution of a periodic signal

* The convolution of two periodic signals x(t) and y(t)
with the same period T} is then defined as:

A to+T1,
xxy(t) = [ x(u)y(t —u)du.
I

)

* where the integral is over an arbitrary period (¢, t,+T,).
This form is sometimes called the cyclic convolution
and then the previous form the acyclic convolution.



p——

The Fourier Series

* We recall that in 1822 Joseph Fourier proved that an
arbitrary (real) function of a real variable s(t), t E R,
having period T, can be expressed as the sum of a
series of sine and cosine functions with frequencies
multiple of the fundamental frequency F =1/T,, namely

o0
s(t)=Ao+ Yy _[Acos2mkFt + By sin2wkFi].
k=1
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The exponential form

* A continuous signal s(t), t €R, with period T}, can be
represented by the Fourier series

00
S(t)= Z Snei?.ﬂ'npf, F=

n=—oo

1
T

* Where:

| to+T, _
Sp = — s(e 2t g neZ.
Tp Jiy
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Some properties of the Fourier Series

e Time shift:

x() =s@t—ty) ——> X,=S,e ' nFn

® Mean Value:

I
mg(T),) = = [ s(t)ydt = Sp.
p Ji

e Parseval’s theorem:

| to+T +00
Po= s Pdr = 3 1sal

P 71y n=—00



Examples

® A real sinusoid:

r . 1 o
s(t) = Agcosrfor +90) ——  s(t)= EAoe’q’Oe'MF' + —Age e 2T

3 2
I I

31 = ;Aoei"’“, = ;Aoe_i“’“, S, =0 for|n|#1.

* A square wave:

Lt t—nT t
51 = Z Aorect( i, p):AorepTP rect(ﬁ), D<d<l

: '

| 3T,

Sp=— f Age 1 2mnFt gy, S, = Spsinc(nd), Sp= Aod.
Ty J_lar,
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The Fourier Transform

* An aperiodic signal s(t), t ER, can be represented by
the Fourier integral:

+00 )
s(1) =f S(Hetdf, teR,
—00

* And
+00
S(f) = j s()e 2t dr,  feR.
—00

F F-1
s(t) —— S(f), S(f) ———s(1).



P———

Interpretation

* In the Fourier series, a continuous-time periodic signal
is represented by a discrete frequency function

S = S(nF).

¢ In the Fourier Transform, this is no more true and we
find a symmetry between the time domain and the
frequency domain, which are both continuous.

* In the Fourier Transform a signal is represented as the
sum of infinitely many exponential functions of the

form =
[S(f)df]e®™!, feR
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Properties

* For real signals the Fourier Transform has the
Hermitian Symmetry:

SC=1)i=3S ),
e Time shift:
S(t — tg) 5 S(f)e~ 12/t

* Frequency shift: -
S(f — fo) — s(t)et?™hot

e Convolution: F
x(t) *y() > X(HY()

* Product: x(O)y(£) S X(F) * Y(F)



Examples

* Rectangular pulse and sinc function

|
3D A

sintfD
xf

S(f)=A0f e—i27!‘ffdt= (e—inD_eiJTfD)=AO

_1p _i2nf
Agrect(t/D) ——?—> AgDsinc(f D).
S(t) = AgD sinc(tD) ——— s(—f) = Agrect(— f/ D).

* Impulses
+00 ) )
S(f) = f 8(t — to)e 2§ — e~i27f10,

—00

5(t — t9) ——— e~i2mf10



Examples

* Periodic signals

;- : |
cos2m Ft = 5 (e27F! 4 e727F1) T J[5(f — F) +8(f + F)],

. . 1
sin27r Ft = — (el27Ft — o=i27F1) 7 5 S —F —sf+P)]

-

PA |

+00 . T +00
s(t) = Z L Z S, 8(f —nF).

n=—00 n=—00
* Signum signal

sgn(t)

> i:rrf'
* Step signal

| F I
1(0) =5 + 5 sen() ——— 38() +

2nf



" Representation of a CT Signal Using Impulse Functions

. , -
Recall our expression for a pulse train: p()

P(f)=nio5(t—nT) I T T I Tt

L

2T -T o Y e
A sampled version of a CT signal, x(t), is:

x (1) = x(O) p(t) = ix(t)&(t _nT)= ix(nT)a(t —nT)

This is known as idealized sampling.
We can derive the complex Fourier series of a pulse train:

p(t) = cheik“’Ot where @, =27/T

k=—00
c, =— Ne * gy = — | S(He ™' dt = —|e | =
k T_Tf/f’“ T_ij() -

o0

o
o) ) e

k=—o0



ier Transform of a Sampled Signa

The Fourier series of our sampled signal, x,(¢) is:

o0

x,(t)=p(t)x() = Z % xX(0)e™

k=—

Recalling the Fourier transform properties of linearity (the transform of a
sum is the sum of the transforms) and modulation (multiplication by a
complex exponential produces a shift in the frequency domain), we can
write an expression for the Fourier transform of our sampled signal:

co

Xs(ejw) = ?{p(t)X(t)} =F Z %x(t)ejkwot 2 % Z j:'{x(t)ejkwot} =

e k=—o0

1 < .
== Z X (ei(@-kwo))

k=_w X(w)

If our original signal, x(t), is
bandlimited:
‘X (e’ )‘ =0 for @>B s + / S




al Reconstruction

Note that if @, >2B , thereplicas of X(e’”) do not overlap in the
frequency domain. We can recover the original signal exactly.

x(1) = x(p(1) x(1)

- H(w) -

Lowpass filter

H(w)

The sampling frequency, . =2B , isreferred to as the Nyquist sampling
frequency.

There are two practical problems associated with this approach:
» The lowpass filter is not physically realizable.

» The input signal is typically not bandlimited.



lasing

Recall that a time-limited signal cannot be bandlimited. Since all signals are

more or less time-limited, they cannot b

e bandlimited. Therefore, we must

lowpass filter most signals before sampling. This is called an anti-aliasing
filter and are typically built into an analog to digital (A/D) converter.

If the signal is not bandlimited distortion will occur when the signal is
sampled. We refer to this distortion as aliasing:

IX(a)l }

=

X ()] 4

—4B  -3B  -2B —B




o 7\
ersampling and Oversamp

Original Signal

=

g of a Signal

Sufficiently Sampled

-l |

INAVAVAY

I

-8B -3B -ZB

Orvversampled A/\‘
HIVAVAY AN

[

-4B HB =B

Undersampled {Aliasing) X0
- - -| -I | | |

fo =28
fo= 258
fo= 158

-8 -3B  -zB
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Quantization

* Quantization makes the range of a signal discrete, so
that the quantized signal takes on only a discrete,
usually finite, set of values.

* Unlike sampling (where we saw that under suitable
conditions exact reconstruction is possible),
quantization is generally irreversible and results in loss
of information.

* It therefore introduces distortion into the quantized
signal that cannot be eliminated.



uantization

* With L levels, we need N = log, L bits to represent the
different levels,

* conversely, with N bits we can represent L = 2" levels.

Unguantized signal 32 levels
1 T T 1 T
[ w o
0.8t {1 o8t H
; |
| I [ N
0.6} / \ 1 o6} HJJ )Jf | .
II | J_.
04} s I". i 04} S ]
|I 1
| / /
0.2r | 1 02¢ 1
\ lJH
0 : ; 0 : ;
0 0.5 1 15 0 05 1 15
16 levels 8 levels
1 1 T
0.8¢ j| I]H 1 08¢ 1
06} i . { osf J—\_I_I—l—[r “ ]
I I - il
0.4¢ LI L |J ll]1 ‘J 0.4¢ L (
0.2r _llJ 1 0.2r 1
0 : ; 0 : ;
0 0.5 1 15 0 05 1 15




Uniform quantization

A
(2L-1)M
oL




Uniform quantization

:
%)
:
;




Non uniform quantization

Original image, 256 gray levels Histogram of original image and quantizer breakpoints
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Uniform vs. non-uniform quantization

Uniform quantization, 4 levels




