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Filter definition in MATLAB

1. Given H(z) = B(2) / A(z):
* [H(omega), omega] = freqz(B(z), A(z), N, ‘whole”): for
both FIR and IIR.
*  h(n) = filter(B(2), A(z), delta(n)): precise with FIR, only
an approximation for IIR.
2. Given h(n):
«  H(k)=fft(h)



Filter definition in MATLAB

* H(k) is defined over N samples.
 The DFTis PERIODIC:
+  In frequency domain, period = Fs, f = [0, Fs) or f = [-Fs/2, Fs/2) [Hz]
+ In angular frequency domain, period = 27Fs, w= [0, 27TFs) or
w =[-1tFs, wFs) [rad/s]
* In normalized frequency, period = 1, f= [0, ) or f=[-0.5, 0.5)

* In normalized angular frequency, period = 21, @= [0, 21) or w= [-1,1)

How to relate the MATLAB result with the actual Fourier spectrum?

= How to express MATLAB samples as real frequencies in Hz i

or normalized frequencies?



MATLAB metrics conversion

The N-th sample in MATLAB corresponds to the maximum

Frequency over one period of the periodic spectrum.

\ ¢

Given the array of MATLAB samples: n = [0, 1,2,..., N — 1]

F
* The frequency axis [Hz] =[O, Fs) is obtained as n - NS

2mF
* The angular frequency axis [rad/s] = [0,27F ) is obtained as n - N
1
* The normalized frequency axis = [0, 1) is obtained as n - N
271

* The normalized angular frequency axis = [0, 277) is obtained as n - —

LEARNING BY HEART IS NOT NEEDED! Just think at the units of measure
4



From Z domain to normalized Frequency domain

z—plane Im - —

w=m,f=0.5
-7, f=—0.5
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FIR vs IRR filters in MATLAB

Given a FIR filter and an input signal x(n),
the output y(n) is obtained by:
* Function ‘conV’ if filter is expressed in time domain
*  Function ‘filter’ if you have H(z) or h(n)
*  The product of ‘fft’s in frequency domain
* The product of signal ‘fft’ and filter ‘freqz’ in f domain
Given an |IR filter and an input signal x(n),
the output y(n) is obtained by:
*  You cannot use ‘conv’! The result will be just an approximation
because the filter has infinite duration

*  Function ‘filter’ if you have H(z)



Zeros and poles recall

e 2; =roots of numerator, called ‘zeros’

* Pi = roots of denominator, called ‘poles’



Zeros and poles recall: the poles

* The poles are associated with the autoregressive part
of the filter = they generate IIR filters.

* The filter amplitude response enhances frequencies which are
near the poles.

* If poles are outside the unit circle and the filter is causal, the

system is unstable.



Zeros and poles recall: the zeros

* The zeros are associated with the moving average part
of the filter = they generate FIR filters
* The filter amplitude response attenuates frequencies which are
near the zeros
* Zeros influence also the phase of the filter:
* Minimum phase zeros if 2 < 1

* Maximum phase zeros if z > 1



Filter design using zeros&poles

* Place poles close to the unit circle in frequencies that must be
emphasized
* Place zeros according to the desired phase response
* The closer they are to the unit circle, the higher the

Frequency attenuation
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Filter design using zeros&poles

Open ‘zpgui.m’
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Magnitude square function

* The magnitude response of a LTI system is:

M(f) = |H(f)P = H(f)- H*(f) = H(z) - H'(="")

|z]=1
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Magnitude square function

(1= z27H (1 = 2F2)

L
.
I

..._':1(1 —piz~1)(1 — p;kz)

~

1

* Foreach zero z; of H(z), there is another zero at o
)

. 1
* For each pole pi of H(z), there is another pole at —
p;

e M(2) presents poles and zeros in conjugate reciprocal pairs
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Magnitude square function

* Given a magnitude response requirement M(z) for H(z)

* Given stability and causality requirements for H(z)

$

* The poles of H(2) are those of M(z) inside the unit circle and are
uniquely identified

* The zeros of H(z) are not uniquely identified

e Given a causal FIR filter H(z) of order N, it has the same

magnitude response M(z) of the causal FIR filter:
G(z)=2z"NH*(z™1
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From M(z) to H(z)
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From M(z) to H(z)

O Sufficient configuration

i : Additional configuration
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Ex 20: magnitude response

Given the filters:

Hy () — 2(1 — 271 (1 +0.5271)
! (1 —0.8e9™/42=1)(1 — 0.8e—i7/4z—1)
(1—2z"H(1+2271)
H .
2(2) = (1 —0.8ei7/42=1)(1 — 0.8e—97/4z~1)

Derive A(z) and B(2) for H;(z) and H,(2)

Plot the zeros and the poles in the Z-plane using ‘zplane’

Plot in the same figure the magnitude responses as a function
of normalized omega in [0, 2pi), using N = 1024 samples

How are the magnitudes related? Why?
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Allpass filters

Allpass filters are designed to have constant gain and any phase

response:

| Hap(f)| = [Hap(2)] =1 =1

* Given the previous considerations, a generic causal allpass filter is:

A(z)
A(2)

H,,(2) =z %el? , K>0

where

Alz)=1+a1z +az 2+ ... +ayz ¥V

A) =2z NA*(z Y =a+aiy_z7 4+ .+ a5z fatt N 427N
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Allpass filters

e Given an allpass filter:

l4+a1z Y +asz 2+ ... +anyz™ VN
aty +ay_z7 o+ ad2 N fajlmN 4 27N

Hap(z) =

a general form to represent an allpass real valued impulse response Is:
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Allpass filter properties

* The cascade of two allpass filters is again an allpass filter
e Each pole of an allpass system is associated with a conjugate

reciprocal zero

e The magnitude of many cascaded a||pass filters is always the same
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Ex 21: allpass systems

Write a MATLAB function ‘allpass.m’ like this:

‘[z_out, p_out, b_out, a_out] = allpass(b,a)’

* Inputs: b, a = numerator and denominator of H(z)

* Outputs: z_out, p_out, b_out, a_out = zeros, poles, numerator,
denominator of the allpass transfer function related to H(z)

e Use the function ‘allpass’ to compute the allpass transfer

143271
function H, (2) related to the causal filter H(z) = 7 —+O.5ZZ_1

* Plot the amplitude of H, () vs normalized frequencies in
[0, 1), using N = 512 samples

* Is the filter stable? How do you expect the phase to behave?
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Minimum phase filters

* Minimum phase filters are such that both H(z) and 1/H(z) are

stable and causal

\ ¢

* The poles must be inside the unit circle

* The zeros must be inside the unit circle

* Given a square magnitude response M(z), there is a unique
system whose zeros and poles are inside the unit circle and it is

called minimum phase system
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From M(z) to H(z)

Unit circle X P4

o" “
—— o—of o
P6 \Pa 3 | oz e
\ z
Y [ XPS




From M(z) to H(z)

O Sufficient configuration
Additional configuration
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From M(z) to H(z)
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From M(z) to H(z)
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Ex 22: minimum phase systems

* Write a MATLAB function ‘typeOfFilter(b, a)’ that receives as
input the numerator and denominator coefficients of a causal
filter H(z)=B(2)/A(z) and it returns:

* -lif the filter is not stable
* 1if the filter is stable and it is minimum phase
* O if the filter is stable but it is not minimum phase
* Ifyou test this function on a FIR filter, which can be the

possible outputs?
1—2271—0.527340.2274
14+0.082z"142z3

* Test the functionon H(z) =

28



Properties of Allpass — Minimum phase filters

* H,,in(2) contains:
* the poles and zeros of H(z) that lie inside the unit circle
* zeros that are conjugate reciprocals of the zeros of H(z) lying outside the
unit circle.
* H,y(z) contains:
e all the zeros of H(z) that lie outside the unit circle
* poles which are conjugate reciprocals of the zeros of H(z) lying outside the

unit circle 29



Ex 23: Allpass-minimum phase conversion

* Given the filter with B(2)=[1, -1.98,1.77, -0.17, 0.21, 0.34],
A(z)=[1, 0.08, 0.40,0.27]

* Compute the allpass-minimum phase decomposition of H(z)

* Check the results using ‘zplane’

* Plot the amplitude of H, (f) (DTFT) vs normalized angular
frequencies in [0, 2pi), using N = 1024 samples

* Plot the first 50 samples of h,; (n)
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How to design filters

1. Specify always the characteristics of the filter in frequency
domain, not in time domain (e.g., lowpass, highpass,
bandpass..)

2. Approximate these properties using a discrete-time system

- find the filter coefficients

3. Realize the system using finite precision arithmetic

32



|deal filter

|deal filter: A H(w)

* low-passif @ =0

* band-passif 0 <w <

* high-passif W =m

&
QY

—a@,, @,

\ 4

The impulse response of this filter is = the sinc function.

It is non-causal with an infinite delay -

Real systems can only approximate it
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Real filters

H(w) | Wp Pass frequency
i We Cut-off frequenc
A : q Y
1+ ) i Ws Stop frequency
1 L e e e e e
1 _ I Passband Ripple
1—6¢ V___ N/ ____
Transition Band
1/\/5 | Passband =~ [ Ay = ws — wp
|
|
|
|
|
: Stopband
0y | :
IStopband Ripple /\ /
< > —=
Wp We  Ws T W



Real filters

1+d6; |

51 Peak passband ripple
Passband Ripple
1-6 ¥V___ NS ____
1 1 — 01 Minimum passband gain

Transition Band
Ay = ws — wp 52 Peak stobband ripple

1/y/3 | Passband

We 3dB or cut-off frequency

Stopband

>
Wp We W T W

[ Stopband Ripple

Towards ideal filters:
* Peak ripple 2 0

* Transition band 2 O
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IR vs FIR filters

FIR:

Only zeros
Always stable
Can be linear phase

It should be high order for

best pe I'"FO rmances

lIR:

Poles and zeros
May be unstable
Difficult to control phase

Lower order (1/10-th of
FIR) for high performances

36



IR vs FIR

+ Only zeros

+ Always stable

+ Can be linear phase

+ It should be high order for

best pe I'"FO rmances

We saw IR design with poles&zeros

How to design FIR filters?
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FIR filter design: windowing method

The ideal filter has an infinite time duration and infinite delay.
|dea: obtain a FIR filter by truncating an infinite duration impulse
response

* Given the ideal h;(n), build h(n) = h;(n)w(n)

« w(n) is a finite duration window

= in frequency domain, product becomes convolution

« H(f)isablurred version of the ideal filter H;( f)
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FIR filter design: windowing method

How to choose the window?

* As short as possible (in time) to minimize the cost of the FIR filter
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FIR filter design: windowing method

How to choose the window?

* As narrow as possible in frequency to approach the ideal filter
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FIR filter design: windowing method

How to choose the window?
 Asshort as possible (in time) to minimize the cost of the FIR filter

* As narrow as possible in frequency to approach the ideal filter

$

Even though these requirements conflict each other, a good window

is defined as the one introducing the minimum distortion.

= Without considering the filter cost, W ( f) should look like a §( f):
* its energy must be concentrated around f = (0

* W (f) should decay fast as frequency increases

41



FIR filter design: windowing method

Secondary lobes N‘

[ Side-lobes rejection

+—>

Mainlobe width

—7'("/2

7T|/2
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FIR filter design: windowing method

Every window is characterized by:

Main-lobe width: it decreases as the window |ength Increases
Side-lobes rejection: ratio between the main-lobe peak and 1°

secondary lobe peak [dB]

Side-lobes roll off: asymptotic decay of the side-lobe peaks vs

frequency octave [dB/octave] or frequency decade [dB/decade]

Examples of windows:

Rectangular = ‘rectwin’ in MATLAB
Hanning = ‘hann’ in MATLAB
Hamming = ‘hamming’ in MATLAB

Blackman = ‘blackman’ in MATLAB and many others...
43



Window design in MATLAB

* You can use the function ‘window’ to design windows:
‘w = window((@window_name, Nsamples)’
* Otherwise, you can call specific functions named as the window,
for instance:
* ‘rect_w = rectwin(Nsamples)’
* ‘hamming_w = hamming(Nsamples)’

* ‘hann_w = hann(Nsamples)’

44



FIR design in MATLAB

‘firl’ is used to implement window-based FIR filter design
h = firl(filter_order,cut-off filter_type,window_type(filter_order+1))
NB:
* ‘cut-off sets the 6dB point (when |H(f)| is 6dB lower than the
maximum peak)
* ‘cut-off for MATLAB is between O and 1, but 1 corresponds to
half the sampling frequency’
MATLAB Cut-off = 1 €= normalized frequency = 0.5

e ‘filter_order’ corresponds to the number of samples - 1

45



FIR design in MATLAB:fir1

Low-pass: ‘h = firl(66, 0.5, hann(67))

20
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FIR design in MATLAB:fir1

High-pass: ‘h = fir1(66, 0.5, ‘high’, hann(67))

IH(f)|

-100 -

-120 -

-140

-160

20

0

-20 +

40 +

-60 +

-80 +

The normalized cut-off frequency is 0.25!

-0.5

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

f

0.5
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FIR design in MATLAB:fir1

Band-pass: ‘h = firl(66, [0.5, 0.8], hann(67))

IH(f)|

20

0_

-20 +

40 +

-60 +

-80

-100 -

I

f

-120 +~
140 - W .
The normalized cut-off Frequencies are 0.25and 0.4
_160 | | | | | | | | |
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 04

0.5
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Ex 24: windowing

* Given x as a cosine wave sampled at Fs = 8KHz, defined
from O to 1second, amplitude 1.5, frequency 1.1KHz, phase 45 deg

* Computey as x filtered with a low-pass filter with normalized cut-off
frequency of 0.4 and 64 samples

* Plot the amplitude of H(f) vs normalized frequencies in [-0.5, 0.5)

* Apply a Hanning window to select the first 512 samples of y

* Plot the amplitude of the DFT of the windowed y vs frequency in Hz,
defined in [-Fs/2, Fs/2).

* If you change the cut-off frequency to 0.05, what do you expect to

see in the spectrum of y?
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