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Ex.1 (Pt.12) 

 From the following signal    2,1,0, 2,0,1x n    , we need to remove completely the spurious 

components at the continuous frequency and at the Nyquist frequency. 

1. [3pts.] Working only in the Frequency domain, provide the Wmatrix in order to get the DFT 

of the signal. 

2. [5pts.] Find the DFT of the signal, define and apply the proper filter to remove just the 

spurious components preserving the other ones. 

3. [4 pts.] Find the final output signal  y n in the time domain using the iDFT. 

Ex.2 (Pt.9) 

We need to extract the Nyquist component working on blocks of 4 samples of the following signal 

 x n working in the time domain:    2,1,0, 2,0,1x n    . 

We want to obtain the result using the Overlap and Add (OLA) technique working on 4 samples. 

1. [3 pts.] define the filter  h n  

2. [6 pts] apply the filter  h n  using OLA applying zero-padding where necessary. 

Ex.3 (Pt.12) To be solved writing the MATLAB code on the sheet. 
1) [2 pt] The signal x(n) contains two sinusoidal contributions (with the same amplitude = 1) at the 

normalized frequencies 0.1 and 0.25. The period of x(n) is 1.25 [ms] and the duration is 100 [ms]. Define 

the signal x(n).  

2) [3.5 pt] Define the filter H(z) as H(z) = (0.9025 + 𝑧ିଶ)⋅(1 - 1.8cos(𝜋/5)𝑧ିଵ+ 0.81𝑧ିଶ) / (1 + 0.9025 𝑧ିଶ).  
 Plot the behaviour of the filter in the frequency domain.  

 Filter the signal x(n) with H(z), defining y(n).  

 Which is the value of y(n = 0)? Define it in MATLAB, but specify also the numerical value that you 

expect. 

3) [4 pt] Compute the all-pass minimum-phase decomposition of the filter H(z), defining H_ap(z) and 

H_min(z) as the two components. (Hint: no computations are needed!) 

 Filter the signal x(n) with H_ap(z) and H_min(z), defining y_ap(n) and y_min(z). 

 Define the signal w(n) as the arithmetic mean between x(n) and y_ap(n). 

 Find the filter H_w(z) such that W(z) = H_w(z) ⋅ X(z).  

4) [2.5 pt] Compute the DFTs of the signals x(n), y(n), y_min(n), y_ap(n), w(n) and plot their absolute 

values as a function of the normalized frequency axis, starting from frequency -0.5. Comment on the 

position/amplitude of the peaks you expect to see for every signal.   
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Ex.2 

   1, 1,1, 1h n     to analyze the Nyquist frequency on blocks of 4 samples. 

Assuming that the samples before and after our input signal are zero (zero padding) working on 

blocks of 4 samples and keeping the reminder of 3 samples at each step we will get:  

        -2     3    -3     1     1    -1     1    1    -1y n x n h n    

  



Ex.3 

 
close all 
clearvars 
clc 
 
%% 1. [2 pt] 
 
% The signal x(n) contains two sinusoidal contributions (with the same  
% amplitude = 1) at the normalized frequencies 0.1 and 0.25.  
% The period of x(n) is 1.25 [ms] and the duration is 100 [ms].  
% Define the signal x(n).  
 
f0 = 1/10; 
f1 = 1/4; 
P_seconds = 1.25e-3; 
duration = 0.1;  
 
% We need to find the sampling rate to define the time-axis. 
% To find Fs, we know that P_samples and P_seconds are related one with the 
% other by P_samples = Fs * P_seconds. 
% First, find P_samples, then compute Fs = P_samples/P_seconds. 
 
P_samples = lcm(10, 4); % = lcm(1/f0, 1/f1) 
Fs = P_samples/P_seconds; 
 
time = 0:1/Fs:duration - 1/Fs; 
 
x = cos(2*pi*f0*Fs*time) + cos(2*pi*f1*Fs*time); 
 
%% 2. [3.5 pt] 
 
% Define the filter H(z) as H(z) = (0.9025 + z^(-2))⋅(1 - 1.8cos(pi/5)z^(-1)+ 
% 0.81z^(-2)) / (1 + 0.9025z^(-2)).  
% Plot the behaviour of the filter in the frequency domain. 
% Filter the signal x(n) with H(z), defining y(n).  
% Which is the value of y(n = 0)? Define it in Matlab, but specify also 
% the numerical value that you expect. 
 
% To define the filter, we can exploit the convolution property 
B = conv([0.9025, 0, 1], [1, -1.8*cos(pi/5), 0.81]); 
A = [1, 0, 0.9025]; 
 
% Behaviour of the filter in the frequency domain 
[H, omega] = freqz(B, A, 1024, 'whole'); 
figure, 
plot(omega./(2*pi), abs(H)); 
title('|DTFT| of the filter H(z)'); 
grid; 
xlabel('f [norm]'); 
 
% % to better analyze the filter (not required) 
% figure; 
% zplane(B, A); 
% title('Z-plane of filter H(z)'); 
% grid; 
 
% filter the signal 
y = filter(B, A, x); 
 
y_0 = x(1)*B(1);  



% we expect that y_0 = x(n=0) * h(n=0) 
% x(n=0) = 2, as we have the sum of two cosinusoidal signals being 1 in 
% n=0. 
% h(n=0) is only due to the numerator coefficient in n = 0, therefore it 
% will be 0.9025. 
% y_0 = 2 * 0.9025 = 1.8050 
 
%% 3. [4 pt] 
 
% Compute the all-pass minimum-phase decomposition of the filter H(z),  
% defining H_ap(z) and H_min(z) as the two components.  
% (Hint: no computations are needed!) 
% Filter the signal x(n) with H_ap(z) and H_min(z), defining y_ap(n) and y_min(z). 
% Define the signal w(n) as the arithmetic mean between x(n) and y_ap(n).  
% Find the filter H_w(z) such that W(z) = H_w(z) ⋅ X(z).  
 
% The filter is already decomposed in an all-pass component and a 
% minimum-phase component.  
% The all-pass component H_ap(z) = (0.9025 + z^(-2))/ (1 + 0.9025z^(-2)). 
% The minimum-phase component H_min(z) = (1 - 1.8cos(pi/5)z^(-1)+ 
% 0.81z^(-2)).  
% Even if you want to follow the standard methodology, you will find that, 
% after all the steps, you end up with these two exact components. 
 
B_ap = [0.9025, 0, 1]; 
A_ap = [1, 0, 0.9025]; 
 
B_min = [1, -1.8*cos(pi/5), 0.81]; 
A_min = 1; 
 
% % to better analyze the filters (not required) 
% figure; 
% zplane(B_ap, A_ap); 
% title('Z-plane of filter H_{ap}(z)'); 
% grid; 
% [H, omega] = freqz(B_ap, A_ap, 1024, 'whole'); 
% figure, 
% plot(omega./(2*pi), abs(H)); 
% title('|DTFT| of the filter H_{ap}(z)'); 
% grid; 
% xlabel('f [norm]'); 
%  
% figure; 
% zplane(B_min, A_min); 
% title('Z-plane of filter H_{min}(z)'); 
% grid; 
% [H, omega] = freqz(B_min, A_min, 1024, 'whole'); 
% figure, 
% plot(omega./(2*pi), abs(H)); 
% title('|DTFT| of the filter H_{min}(z)'); 
% grid; 
% xlabel('f [norm]'); 
 
% Filter the signal x 
y_ap = filter(B_ap, A_ap, x); 
y_min = filter(B_min, A_min, x); 
 
% Define the signal w as the arithmetic mean between x(n) and y_ap(n) 
w = 0.5*x + 0.5*y_ap; 
 
% Find the filter H_w such that W(z) = X(z) * H_w(z) 
% W(z) = (X(z) + X(z)*H_ap(z)) / 2 = X(z) (H_ap(z) + 1)/2 



% --> H(z) = (H_ap(z) + 1)/2. 
B_w = (B_ap + A_ap)*0.5; % B_w = [(1 + 0.9025), 0, (1 + 0.9025)]/2; 
A_w = A_ap; 
% --> This is a notch filter in f1. We can understand it by looking at the  
% position of the zeros and poles: they have the same phase, but the zeros  
% are on the unit circle. 
 
% % to better analyze the filter (not required) 
% figure; 
% zplane(B_w, A_w); 
% title('Z-plane of filter H_w(z)'); 
% grid; 
% [H, omega] = freqz(B_w, A_w, 1024, 'whole'); 
% figure, 
% plot(omega./(2*pi), abs(H)); 
% title('|DTFT| of the filter H_{w}(z)'); 
% grid; 
% xlabel('f [norm]'); 
 
%% 4. [2.5pt] 
 
% Compute the DFTs of the signals x(n), y(n), y_min(n), y_ap(n), w(n)  
% and plot their absolute values as a function of the normalized frequency 
% axis, starting from frequency 0.  
% Comment on the position/amplitude of the peaks you expect to see  
% for every signal.  
 
X = fft(x); 
Y = fft(y); 
Y_min = fft(y_min); 
Y_ap = fft(y_ap); 
W = fft(w); 
 
N = length(y); 
freq_axis = 0:1/N:1 - 1/N; 
 
figure;  
stem(freq_axis, abs(X)); 
title('Absolute value of the DFT of the signal x(n)'); 
grid; 
xlabel('f [norm]'); 
% We find four peaks in f0, f1, 1-f0, 1-f1. They have the same amplitude. 
 
figure;  
stem(freq_axis, abs(fftshift(Y))); 
title('Absolute value of the DFT of the signal y(n)'); 
grid; 
xlabel('f [norm]'); 
% We find four peaks in f0, f1, 1-f0, 1-f1. 
% The peaks in frequency f0 are slightly attenuated  
% with respect to those of x(n), 
% because the filter has zeros in f0 with absolute value = 0.9. 
% The peaks in frequency f1 are not attenuated by the filter.  
% Their amplitude differs from that of x(n) because the filter introduces 
% a gain in f = f1 that is different from 1.  
 
figure;  
stem(freq_axis, abs(fftshift(Y_min))); 
title('Absolute value of the DFT of the signal y_{min}(n)'); 
grid; 
xlabel('f [norm]'); 
% We find basically no differences with respect to y(n). H(z) and H_min(z) 



% differ only for the all-pass component, which has no effect on the 
% amplitude.  
 
figure;  
stem(freq_axis, abs(fftshift(Y_ap))); 
title('Absolute value of the DFT of the signal y_{ap}(n)'); 
grid; 
xlabel('f [norm]'); 
% The peaks are basically the same as x(n), because the filter is an all-pass  
 
figure;  
stem(freq_axis, abs(fftshift(W))); 
title('Absolute value of the DFT of the signal w(n)'); 
grid; 
xlabel('f [norm]'); 
% The filter is a notch in f = f1. Therefore, we find only the 
% contributions at f0, with an amplitude which is similar to that of x(n). 
 

 
 


