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date: February 6%, 2025

From the following signal x[n] = {—2,1, 0, —2,0,1} , we need to remove completely the spurious

components at the continuous frequency and at the Nyquist frequency.

1. [3pts.] Working only in the Frequency domain, provide the W matrix in order to get the DFT
of the signal.

2. [Spts.] Find the DFT of the signal, define and apply the proper filter to remove just the
spurious components preserving the other ones.

3. [4 pts.] Find the final output signal y[n] in the time domain using the iDFT.

We need to extract the Nyquist component working on blocks of 4 samples of the following signal

x[n]working in the time domain: x[n] = {—2,1,0,—2,0,1} .
We want to obtain the result using the Overlap and Add (OLA) technique working on 4 samples.

1. [3 pts.] define the filter h[n]

2. [6 pts] apply the filter h[n] using OLA applying zero-padding where necessary.

1) [2 pt] The signal x(n) contains two sinusoidal contributions (with the same amplitude = 1) at the
normalized frequencies 0.1 and 0.25. The period of x(n) is 1.25 [ms] and the duration is 100 [ms]. Define
the signal x(n).

2) [3.5 pt] Define the filter H(z) as H(z) = (0.9025 + z~2)-(1 - 1.8cos(rt/5)z~ 1+ 0.81z72) / (1 + 0.9025 z~2).
e Plot the behaviour of the filter in the frequency domain.
e  Filter the signal x(n) with H(z), defining y(n).
e Which is the value of y(n = 0)? Define it in MATLAB, but specify also the numerical value that you

expect.

3) [4 pt] Compute the all-pass minimum-phase decomposition of the filter H(z), defining H_ap(z) and
H_min(z) as the two components. (Hint: no computations are needed!)
e Filter the signal x(n) with H_ap(z) and H_min(z), defining y_ap(n) and y_min(z).
e Define the signal w(n) as the arithmetic mean between x(n) and y_ap(n).
e  Find the filter H_w(z) such that W(z) = H_w(z) - X(z2).

4) [2.5 pt] Compute the DFTs of the signals x(n), y(n), y_min(n), y_ap(n), w(n) and plot their absolute
values as a function of the normalized frequency axis, starting from frequency -0.5. Comment on the
position/amplitude of the peaks you expect to see for every signal.



Solutions
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Ex.2
h[n] = {1,—1,1, —1} to analyze the Nyquist frequency on blocks of 4 samples.

Assuming that the samples before and after our input signal are zero (zero padding) working on
blocks of 4 samples and keeping the reminder of 3 samples at each step we will get:

y[n]=x[n]*h[n]={2 3 3 1 1 -1 1 1 -l



Ex.3

close all
clearvars
clc

%% 1. [2 pt]

% The signal x(n) contains two sinusoidal contributions (with the same
% amplitude = 1) at the normalized frequencies 0.1 and 0.25.

% The period of x(n) is 1.25 [ms] and the duration is 100 [ms].

% Define the signal x(n).

fO =1/10;

f1=1/4;

P_seconds = 1.25e-3;
duration = 0.1;

% We need to find the sampling rate to define the time-axis.

% To find Fs, we know that P_samples and P_seconds are related one with the
% other by P_samples = Fs * P_seconds.

% First, find P_samples, then compute Fs = P_samples/P_seconds.

P_samples = Icm(10, 4); % = lcm(1/f0, 1/f1)
Fs = P_samples/P_seconds;

time = 0:1/Fs:duration - 1/Fs;
x = cos(2*pi*f0*Fs*time) + cos(2*pi*f1*Fs*time);
%% 2. [3.5 pt]

% Define the filter H(z) as H(z) = (0.9025 + z*(-2))-(1 - 1.8cos(pi/5)z"(-1)+
% 0.81z"(-2)) / (1 + 0.9025z"(-2)).

% Plot the behaviour of the filter in the frequency domain.

% Filter the signal x(n) with H(z), defining y(n).

% Which is the value of y(n = 0)? Define it in Matlab, but specify also

% the numerical value that you expect.

% To define the filter, we can exploit the convolution property
B = conv([0.9025, 0, 1], [1, -1.8*cos(pi/5), 0.81]);
A =[1,0, 0.9025];

% Behaviour of the filter in the frequency domain
[H, omega] = freqz(B, A, 1024, 'whole");

figure,

plot(omega./(2*pi), abs(H));

title('|DTFT| of the filter H(z)");

grid;

xlabel('f [norm]'’);

% % to better analyze the filter (not required)
% figure;

% zplane(B, A);

% title('Z-plane of filter H(z)");

% grid;

% filter the signal
y = filter(B, A, x);

y_0=x(1)"B(1);



% we expect that y_0 = x(n=0) * h(n=0)

% x(n=0) = 2, as we have the sum of two cosinusoidal signals being 1 in
% n=0.

% h(n=0) is only due to the numerator coefficient in n = 0, therefore it

% will be 0.9025.

% y_0=2%0.9025 = 1.8050

%% 3. [4 pt]

% Compute the all-pass minimum-phase decomposition of the filter H(z),

% defining H_ap(z) and H_min(z) as the two components.

% (Hint: no computations are needed!)

% Filter the signal x(n) with H_ap(z) and H_min(z), defining y_ap(n) and y_min(z).
% Define the signal w(n) as the arithmetic mean between x(n) and y_ap(n).

% Find the filter H_w(z) such that W(z) = H_w(z) - X(z).

% The filter is already decomposed in an all-pass component and a

% minimum-phase component.

% The all-pass component H_ap(z) = (0.9025 + z*(-2))/ (1 + 0.9025z"(-2)).
% The minimum-phase component H_min(z) = (1 - 1.8cos(pi/5)z*(-1)+

% 0.81z"(-2)).

% Even if you want to follow the standard methodology, you will find that,
% after all the steps, you end up with these two exact components.

B_ap =[0.9025, 0, 1];
A_ap =11, 0, 0.9025];

B_min =[1, -1.8*cos(pi/5), 0.81];
A_min =1;

% % to better analyze the filters (not required)
% figure;

% zplane(B_ap, A_ap);

% title('Z-plane of filter H_{ap}(z)");

% grid;

% [H, omega] = freqz(B_ap, A_ap, 1024, 'whole");
% figure,

% plot(omega./(2*pi), abs(H));

% title('|DTFT]| of the filter H_{ap}(z)");

% grid;

% xlabel('f [norm]');

%

% figure;

% zplane(B_min, A_min);

% title('Z-plane of filter H_{min}(z)");

% grid;

% [H, omega] = freqz(B_min, A_min, 1024, 'whole');
% figure,

% plot(omega./(2*pi), abs(H));

% title('|DTFT| of the filter H_{min}(z)");

% grid;

% xlabel('f [norm]’);

% Filter the signal x
y_ap = filter(B_ap, A_ap, x);
y_min = filter(B_min, A_min, x);

% Define the signal w as the arithmetic mean between x(n) and y_ap(n)
w =0.5"x + 0.5%_ap;

% Find the filter H_w such that W(z) = X(z) *
% W(z) = (X(z) + X(2)*H_ap(z)) / 2 = X(z) (H

H_w(z)
ap(z) + 1)/2



% --> H(z) = (H_ap(z) + 1)/2.

B_w=(B_ap +A_ap)*0.5; % B_w =[(1 +0.9025), 0, (1 + 0.9025)]/2;
A_w=A_ap;

% --> This is a notch filter in f1. We can understand it by looking at the

% position of the zeros and poles: they have the same phase, but the zeros
% are on the unit circle.

% % to better analyze the filter (not required)
% figure;

% zplane(B_w, A_w);

% title('Z-plane of filter H_w(z)");

% grid;

% [H, omega] = freqz(B_w, A_w, 1024, 'whole");
% figure,

% plot(omega./(2*pi), abs(H));

% title('|DTFT| of the filter H_{w}(z)");

% grid;

% xlabel('f [norm]');

%% 4. [2.5pt]

% Compute the DFTs of the signals x(n), y(n), y_min(n), y_ap(n), w(n)

% and plot their absolute values as a function of the normalized frequency
% axis, starting from frequency 0.

% Comment on the position/amplitude of the peaks you expect to see

% for every signal.

X = fft(x);

Y = fft(y);

Y_min = fft(y_min);
Y_ap = fft(y_ap);
W = fft(w);

N = length(y);
freq_axis = 0:1/N:1 - 1/N;

figure;

stem(freq_axis, abs(X));

title('Absolute value of the DFT of the signal x(n)");

grid;

xlabel('f [norm]'’);

% We find four peaks in f0, f1, 1-f0, 1-f1. They have the same amplitude.

figure;

stem(freq_axis, abs(fftshift(Y)));

title('Absolute value of the DFT of the signal y(n)");

grid;

xlabel('f [norm]'’);

% We find four peaks in f0, f1, 1-f0, 1-f1.

% The peaks in frequency fO are slightly attenuated

% with respect to those of x(n),

% because the filter has zeros in fO with absolute value = 0.9.
% The peaks in frequency f1 are not attenuated by the filter.
% Their amplitude differs from that of x(n) because the filter introduces
% a gain in f = f1 that is different from 1.

figure;

stem(freq_axis, abs(fftshift(Y_min)));

title('Absolute value of the DFT of the signal y_{min}(n)');

grid;

xlabel('f [norm]');

% We find basically no differences with respect to y(n). H(z) and H_min(z)



% differ only for the all-pass component, which has no effect on the
% amplitude.

figure;

stem(freq_axis, abs(fftshift(Y_ap)));

title('Absolute value of the DFT of the signal y_{ap}(n)");

grid;

xlabel('f [norm]");

% The peaks are basically the same as x(n), because the filter is an all-pass

figure;

stem(freq_axis, abs(fftshift(W)));

title('Absolute value of the DFT of the signal w(n)");

grid;

xlabel('f [norm]');

% The filter is a notch in f = f1. Therefore, we find only the

% contributions at f0, with an amplitude which is similar to that of x(n).



