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Ex.1 (Pt.12)  

We need to design a digital filter with the response (Magnitude) represented in the following picture. In 

particular, we must honor the filter values at the following normalized frequencies represented by the 

red squares:   00H    , 0
2

H
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[5 pts.] Provide a possible z-transform of the filter and its pole-zero plot. 

[3 pts.] Provide the block diagram for the implementation of the proposed digital filter. 

[4 pts.] Depict an approximate representation of the phase of the proposed filter and find the filter 

output with correct amplitude and phase when the input is a sinusoid at the Nyquist frequency: 

   cosx n n . 

Ex.2 (Pt.10) 

The signal ( )x n , ( ) { },0,0, 3,3,1, 1, 2,0,0,x n = -  , where 1 represents ( )0x , is applied as the 

input to the following system:  

 

If the impulse response ( )h n  is given by ( ) { }1,2,1h n = , the what is the output signal ( )y n ? 

Using the same impulse response, what will be the output in this case? 

CONTINUES ON THE BACK 



Ex.3 (Pt.12) To be solved writing the MATLAB code on the sheet. 

 

1) [2 pt] Define a sinusoidal signal s(n) = cos(2*pi*f0*n), n = [0, N-1], N = 500, such that s(n=0) = 

s(n=10). 

2) [3 pt] You are given a filter H(z) = B(z) / A(z), where:  

 B(z) = (1 - z_0 z^-1)*(1 - a*cos(pi/5)z^-1 + b*z^-2) 

 A(z) = (1 - c*cos(theta)z^-1 + d*z^-2). 

 Choose the values of z_0, a, b, c, theta, d such to define a notch filter, which should be causal 

and stable with real-coefficients.  

 Plot the absolute value of the frequency response of the filter vs the normalized frequency axis, 

considering 1024 samples.  

3) [3 pt]  

 Compute the linear convolution between B(z) and ten periods of s(n), considering only the first 

samples of the result equal to ten periods of s(n).  

 Compute also the circular convolution (exploiting the DFT properties) between s(n) and B(z), 

considering a number of samples equal to ten periods of s(n). 

 Plot the two convolution results in the same figure using the function 'stem', together with the 

first samples of the signal s(n) (consider the same length of the filtered signals).  

 What do you expect to find as resulting signals? Are there any differences between the results? If 

yes, in which samples? Motivate your answer. 

4) [4 pt] We want to define the all-pass transfer function version of the filter H(z), namely Hap(z), which 

should be causal and stable with real coefficients.  

 By directly apply the all-pass conversion to the filter H(z), are we defining a stable filter? Why?  

 Modify the values of the roots (you choose the values) such that the all-pass filter satisfies the 

requirements and define Hap(z).  

 Filter the signal s(n) with Hap(z), defining s_f(n).  

 Plot the amplitudes of the DFT of s(n) and of the DFT of s_f(n) in the same figure. What do you 

expect to find, apart some small deviations?  

 

  



Solutions 

Ex.1  

A possible implementation is a filter with 3 zeros at frequencies 0, ,
2 2

     and a pole at   . 

Since the output at the 3 frequencies 0, ,
2 2

     must be 0, the the 3 zeros are exactly on the unit 

circle 1z  , while, the pole can be placed on the real axis between 0 and -1. The exact position of the 

pole can be determined in order to satisfy the constraints: 
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The phase will be:  

  

Ex.2  

The results for upsampling, filtering and, then, downsampling are 

[ ] {3,0,3,0,1,0, 1,0, 2,0}

[ ] {1,2,1} {3,6,6,6, 4, 2,0, 2,1, 4, 2,0}

[ ] {3,6,0, 4}
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In the second case: 

' [ ] {1,0, 2,0,1,0} {3,0,9,0,10,0, 4,0,1,0,3,0, 2,0,0}f ux n x    



 

Ex.3 (MATLAB CODE) 

 

close all 
clearvars 
clc 
 
%% 1.   
 
% [2 pt] Define a sinusoidal signal s(n) = cos(2*pi*f0*n), n = [0, N-1],  
% N = 500, such that s(n=0) = s(n=10). 
 
period = 10; 
f0 = 1/period; 
N = 500; 
n = 0:N-1; 
s = cos(2*pi*f0*n); 
 
%% 2. 
 
% [3 pt] You are given a filter H(z) = B(z) / A(z), where:  
% B(z) = (1 - z_0 z^-1)*(1 - a*cos(pi/5)z^-1 + b*z^-2). 
% A(z) = (1 - c*cos(theta)z^-1 + d*z^-2). 
% Choose the values of z_0, a, b, c, theta, d such to define a notch 
filter,  
% which should be causal and stable with real-coefficients. 
% Plot the absolute value of the frequency response of the  
% filter vs the normalized frequency axis, considering 1024 samples.  
 
% there's no constraint on z_0, we can choose a generic real value 
z_0 = 2; 
% the filter should be a notch. 
% the zeros are on the unit circle --> a = 2*rho_z, with rho_z = 1 
a = 2; 
b = 1; 
% the poles must be inside the unit circle, but with the same phase of the 
% zeros --> theta = pi/5 
theta = pi/5; 
c = 2*0.95; 
d = 0.95^2; 
 
B = conv([1, -z_0], [1, -a*cos(pi/5), b]); 
A = [1, -c*cos(theta), d]; 
 
% frequency response of the filter 
[H_ap, omega] = freqz(B, A, 1024, 'whole'); 
figure, 
plot(omega./(2*pi), abs(H_ap)); 
title('|DTFT| of the filter H(z)'); 
grid; 
xlabel('f [norm]'); 
 
%% 4.  
 
% [3 pt] Compute the linear convolution between B(z) and ten periods of 



% the signal s, considering only the first samples of the result exactly 
equal  
% to the value of 10 periods of s(n). Then, compute also the circular 
convolution 
% (exploiting the fft properties) 
% between s(n) and B(z), considering an amount of samples equal to 10 
% periods of s(n). 
% Plot the two convolution results in the same figure using the function 
% 'stem', together with the first samples of the signal s(n) (consider  
% the same length of the filtered signals).  
% What do you expect to find as resulting signals? Are there any  
% differences between the results? If yes, in which samples? Motivate your 
answer. 
 
linear_conv = conv(s(1:10*period), B); 
linear_conv = linear_conv(1:10*period); 
 
S = fft(s(1:10*period)); 
F_B = fft(B, 10*period); 
 
cyclic_conv = ifft(S.*F_B); 
 
figure,  
stem(s(1:10*period));  
hold on;  
stem(linear_conv, '--'); 
stem(cyclic_conv, '-.') 
legend('s(n)', 'linear convolution result', 'cyclic convolution result'); 
 
% We expect to find a signal which is = 0, since the filter B(z) has zeros 
% exactly in the frequency f0 of the signal.  
% The two results differ only in the first 3 samples, which correspond to 
% the length (filter B(z)) - 1. This is due to periodic artifacts 
% of the cyclic convolution between the two signals. This  
% consideration is the rationale behind the overlap and save method. 
 
%% 3. 
 
% [4 pt] We want to define the all-pass transfer function version of the  
% filter H(z), namely Hap(z), which should be causal and stable with  
% real coefficients. By directly apply the all-pass conversion to the 
% filter H(z), are we defining a stable filter? Why? 
% Modify the values of the roots (you choose the values) such that the 
% all-pass filter satisfies the requirements. 
% Filter the signal s(n) with Hap(z), defining s_f(n).  
% Plot the amplitudes of the DFT of s(n) and of the DFT of s_f(n)  
% in the same figure. What do you expect to find, apart some small 
deviations?  
 
% the zeros are on the unit circle --> to obtain poles that are inside the 
% circle, let's move them out of the circle.  
% you should make the same operation over the zero z_0 if you selected it 
% to be inside the circle.  
 
% let's define B(z) again with new values 
a = 2*1.1; 
b = 1.1^2; 
B = conv([1, -z_0], [1, -a*cos(pi/5), b]); 



 
% define the all-pass transfer function 
A_tilde = fliplr(conj(A)); 
B_tilde = fliplr(conj(B)); 
 
Bap = conv(B, A_tilde); 
Aap = conv(A, B_tilde); 
 
% normalize everything by Aap(1)  
Bap = Bap / Aap(1); 
Aap = Aap / Aap(1); 
 
% filter the signal 
s_f = filter(Bap, Aap, s); 
 
% compute ffts 
S = fft(s); 
S_f = fft(s_f); 
 
figure; plot(abs(S)); 
hold on; plot(abs(S_f), '--'); 
grid; 
legend('DFT of s(n)', 'DFT of s_f(n)'); 
 
% the two amplitudes should be one equal to the other (apart from small 
deviations), 
% since the signal s(n) 
% has been filtered with an all-pass filter which does not modify the 
% amplitude response of the filtered signal. 
 


