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Ex.1 (Pt.12)  

We have to analyze the following digital filter: 

 

[2pts.] Provide the z-transform of the filter and describe the filter (e.g. the kind of the filter, stability, 

max, mixed or minimum phase…) 

[4 pts.] Provide its pole-zero plot, depict its amplitude and phase behavior at different frequencies 

[4 pts.] Design a new FIR filter that approximate the behavior of the pole of the previous filter with 3 

zeros: what is its z-transform? Provide its zero-pole plot. 

[2 pts.] Describe and represent approximately the differences of the two filters in the amplitude 

response. 

 

Ex.2 (Pt.10) 

Given a signal sampled at 48kHz, we want to downsample it to 32kHz. 

[5 pts.] Provide a detailed description of the procedure to change the signal sample rate detailing 

the parameters of the adopted filters. 

[3 pts.] Design a filter with at least 1 pole and 1 zero (outside from the origin) that could be used in 

the task described above. 

[2 pts.] Discuss the impact of the designed filter, with particular reference to the passband, 

transition band, and stopband, on the utilized signal compared to an ideal filter. Propose a 

possible measure of the introduced deviation. 

 

 

CONTINUES ON THE BACK



Ex.3 (Pt.12) To be solved writing the MATLAB code on the sheet. 
1) [3 pt] You are given two periodic signals, x(n) and y(n): 

 The first samples of x(n) are [1,  
√ଷ
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 The first samples of y(n) are [1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1].  

One period of the signal x(n) is contained in the reported sample set, and the same is for y(n). 

Define the signal z(n) = x(n) + y(n), which is periodic with period 2.4 milliseconds and has a duration 

of 12 milliseconds.  

2) [4 pt] We want to increase the sampling rate by a factor 1.5. To do so, we have available a filter H(z) 

defined by this linear finite-difference equation:  

output(n) = input(n) – input(n-12) + output(n-1). 

Answer to the following questions, including motivations: 

 Is the filter stable? (hint: is it FIR or IIR?) 

 Plot the absolute value of the frequency response of the filter vs the normalized frequency axis, 

considering 2048 samples.  

 Which is the expected behaviour for this filter? (i.e., which is the function associated with it, if it 

is a low pass or a high pass). 

 Which is the frequency position of the first zero of the filter?  

3) [2 pt] Implement the sampling rate conversion of z(n) by using the filter H(z). Define the final signal as 

z_1(n).  

4) [3 pt] Compute the DFT of z_1(n) over 2048 samples. Plot the absolute value of the DFT versus the 

normalized frequency axis.  

 Which are the theoretical positions (due to the sampling rate conversion) for the peaks of z_1(n)? 

 Given the behaviour of H(z), do you expect to find all the peaks of z_1(n)? Which is the frequency 

contribution that is kept by the filter? Motivate your answers.  

 

  



Solutions 

Ex.1  
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It is an IIR high-pass stable filter with minimum phase. 
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The filter transfer function H(z) can be written as: 
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Truncating it to the first 4 terms will give: 
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Its zero-pole plot is: 
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Its amplitude response is: 

 

Ex.2  

In order to change the sample rate from 48kHz to 32kHz (2/3 of the original frequency) we need to 

upsample of an order of 2 (L=2), filter the output with an ideal low pass filter with a cutoff of 

3c

   and, then donwsample of an order of 3 (M=3). 

 

Ex.3 (MATLAB CODE) 
close all 
clearvars 
clc 
 
%% 1. [3 pt] 
 
% You are given two periodic signals, x(n) and y(n): 
% The first samples of x(n) are  
% [1,  √3/2,0.5,0,-0.5,-√3/2,-1,-√3/2,-0.5,0,0.5,√3/2,1,√3/2,0.5].  
% The first samples of y(n) are  
% [1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1].  
% One period of the signal x(n) is contained in the reported sample 
set,  
% and the same is for y(n).  
% Define the signal z(n) = x(n) + y(n), which is periodic  
% with period 2.4 milliseconds and has a duration of 12 
milliseconds.  
 
% The first signal has a period = 12. It is a cosine with normalized 
% frequency = 1/12 --> x(n) = cos(pi/6*n). 
% The second signal has a period = 4. It is a cosine with normalized 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Normalized Frequency ( rad/sample)

0.5

1

1.5

2

2.5

3

M
a

g
n

itu
de

Magnitude Response



% frequency = 1/4 --> y(n) = cos(pi/2*n). 
 
P_1_sample = 12; 
P_2_sample = 4; 
 
% The period of z(n) is the lcm(12, 4) = 12. 
% We can find the sampling rate Fs = P_sample / P_sec 
P_sample = 12; 
P_sec = 2.4e-3; 
Fs = P_sample/P_sec; 
 
% frequencies [Hz] 
f_1 = 1/P_1_sample * Fs; 
f_2 = 1/P_2_sample * Fs; 
 
% time axis [sec] 
dur = 12e-3; 
t_axis = 0:1/Fs:dur; 
 
% signal definition 
z = cos(2*pi*f_1*t_axis) + cos(2*pi*f_2*t_axis); 
 
%% 2. [4 pt] 
 
% We want to increase the sampling rate by a factor 1.5.  
% To do so, we have available a filter H(z) defined by this  
% linear finite-difference equation:  
% output(n) = input(n) – input(n-12) + output(n-1). 
% Answer to the following questions, including motivations: 
% Is the filter stable? (hint: is it FIR or IIR?) 
% Plot the absolute value of the frequency response of the  
% filter vs the normalized frequency axis, considering 2048 samples.  
% Which is the expected behaviour for this filter  
% (the function associated with it, if it is a low pass or a high 
pass). 
% Which is the frequency position of the first zero of the filter?  
 
% numerator (we need to insert 11 zeros in the middle to account for 
all 
% the zero coefficients from z^{-1} up to z^{-11} 
B = [1, zeros(1, 11), -1]; 
% denominator 
A = [1, -1]; 
 
% the filter is stable. 
% H(z) = 1/ (1 - z^(-1)) - z^(-12) / (1 - z^(-1)) 
% --> h(n) = u(n) - u(n-12) 
% the second term deletes the first one for n >= 12.  
% this is a rectangular window with size (number of samples 
different from 
% 0) = 12. 



% --> the filter is FIR, therefore it is stable.  
 
% visualize the time domain behaviour of the filter (not required) 
% first 30 samples 
h = filter(B, A, [1, zeros(1, 29)]); 
figure,  
stem(0:29, h); 
grid; 
title('h(n)'); 
grid; 
xlabel('n'); 
 
% frequency response of the filter 
N = 2048; 
[H, omega] = freqz(B, A, N, 'whole'); 
figure; 
plot(omega./(2*pi), abs(H)); 
title('|DTFT| of the filter H(z)'); 
grid; 
xlabel('f [norm]'); 
 
% the expected behaviour is that of a sinc function, since the 
% filter has a rectangular behaviour in the time.  
% The first zero of this filter can be found at normalized frequency 
= 
% 1/rectangular_window_size = 1/12.  
% Therefore, the filter is a low pass filter. 
 
%% 3. [2 pt]  
 
% Implement the sampling rate conversion of z(n) by using the filter 
H(z).  
% Define the final signal as z_1(n).  
 
% since we need to change the sampling rate by a factor 1.5 
L = 3; 
M = 2; 
 
% first, upsampling 
z_upsampled = zeros(1, length(z) * L); 
z_upsampled(1:L:end) = z; 
 
% filtering  
z_f = filter(B, A, z_upsampled); 
 
% decimation  
z_1 = z_f(1:M:end); 
 
%% 4. [2 pt]  
 
% Compute the DFT of z_1(n) over 2048 samples.  



% Plot the absolute value of the DFT versus the normalized frequency 
axis.  
% Which are the theoretical positions (due to the sampling rate 
conversion) 
% for the peaks of z_1(n)? 
% Given the behaviour of H(z), do you expect to find all the peaks 
of z_1(n)?  
% Which is the frequency contribution that is kept by the filter?  
% Motivate your answers.  
 
N = 2048; 
Z_1 = fft(z_1, N); 
 
% normalized frequency axis: 
freq_axis = 0:1/N:1 - 1/N; 
 
% absolute value of dft(z(n)) (not required) 
Z = fft(z, N); 
figure;  
stem(freq_axis, abs(Z)); 
title('Absolute value of the DFT of the signal z(n)'); 
grid; 
xlabel('f [norm]'); 
% There are two peaks at f_1 = 1/12 and f_2 = 1/4, together with 
their 
% symmetric components. 
 
% absolute value of Z_1(f) 
figure;  
stem(freq_axis, abs(Z_1)); 
title('Absolute value of the DFT of the signal z_1(n)'); 
grid; 
xlabel('f [norm]'); 
 
% theoretical positions of the peaks: 
% when upsampling by L = 3, the peaks of z(n) are moved in 1/36 (due 
to f_1)  
% and 1/12 (due to f_2), then in 1/3 - 1/36 and 1/3 - 1/12,  
% plus all the other replicas... 
% when filtering, we expect that everything after the cutoff (= 1/6) 
is 
% removed by the filter --> only the peaks at 1/36 and 1/12 should 
remain. 
% when downsampling by M = 2, the peaks are moved in 1/18 (due to 
f_1)  
% and 1/6 (due to f_2) with their related symmetric.  
 
% Given this specific H(z), we don't expect to find all the 
theoretical 
% peaks in the final result. Indeed, H(z) has a sinc behaviour and 



% it has zeros every 1/12 in the normalized frequency domain. Since 
the 
% first zero is exactly in 1/12, this strongly attenuates the 
frequency 
% component f_2 (after the upsampling, f_2 has been moved to 1/12).  
% Therefore, in the final result, we expect to find only two main 
peaks: 
% one in 1/18 (due to f_1) and its related symmetric.  
 

 
 


