Multimedia Signal Processing 1st Module and Fundamentals of Multimedia Signal Processing

date: November 4th, 2023

Ex.1 (Pt.12)

A Digital filter has the following difference equation:

$$y[n] = x[n] + \sqrt{2}x[n-1] + x[n-2] - 0.7 \cdot \sqrt{2}y[n-1] - 0.49y[n-2].$$

[4 pts] Provide the z transform of the filter and the pole-zero plot.

[4 pts] Depict an approximated representation of amplitude and phase response

[4 pts] The signal $x(t) = 10 + 5\cos(2\pi 50t) + 7\sin(2\pi 75t)$ is sampled at 200Hz and then filtered with the previous filter. What will be the amplitude of the spectral components of the output?

Comment the results.

Ex.2 (Pt.10)

A signal $x[n] = \{2,2,3,-1\}$ has to be filtered with the filter $h = \{1,0,-1\}$

[1 pt] Find the output signal y[n] working in the time domain.

We need to process the filter in real-time adopting the Overlap and Save approach and working in the frequency domain with blocks of 4 samples.

[2 pts] Define the W matrix to retrieve obtain the DFT of the signal and the filter

[3 pts] Define the procedure to apply the Overlap and Save to this specific context and the countermeasures to avoid unwanted effects of the circular convolution.

[4 pts] Report all the steps and the intermediate results of the Overlap and Save procedure in order to get the same result y[n] of the first point.

CONTINUES ON THE BACK

Ex.3 (Pt.12) To be solved writing the MATLAB code on the sheet.

- 1) [3 pt] The signal x(n) repeats periodically every 20 milliseconds and it is sampled every 1 milliseconds. x(n) is composed of two cosinusoidal contributions with frequencies f0 and f1 = f0/2. Define the signal x(n) such that its DFT shows exactly 4 discrete pulses over one frequency period and that x(n) has at least 150 samples.
- 2) [5 pt] You are given a magnitude squared function M(z) with the following zeros-poles plot:

In particular, the root positions are:

a =
$$0.95e^{j\frac{\pi}{5}}$$
, b = $1.05e^{j\frac{\pi}{5}}$, c = $1.11e^{j\frac{\pi}{10}}$, d = $2e^{j\frac{\pi}{10}}$,
e = 2, f = $2e^{-j\frac{\pi}{10}}$, g = $1.05e^{-j\frac{\pi}{5}}$, h = $0.95e^{-j\frac{\pi}{5}}$,
i = $1.11e^{-j\frac{\pi}{10}}$, j = $0.9e^{-j\frac{\pi}{10}}$, k = 1, I = $0.5e^{j\frac{\pi}{10}}$, m = 0.5 ,
n = $0.5e^{-j\frac{\pi}{10}}$, o = $0.9e^{j\frac{\pi}{10}}$.

(hints: in c, i, j, o there are both zeroes and poles; we don't have roots with negative real part; all rational numbers are rounded by using two decimal digits).

- Select the correct roots to define a causal stable realvalued all-pass filter H_ap(z). Define the filter H_ap(z).
- Select the correct roots to define a causal stable real-valued minimum phase system H_min(z) such to enhance the contribution in f0 and attenuate that in f1, and such that |H_min(f=0)| = 4. Define the filter H_min(z).
- Define the filter H(z), whose all-pass/minimum-phase decomposition is defined by filters H_ap(z) and H_min(z).
- 3) [4 pt] Filter the signal x(n) with the three different filters, defining the signals y_ap(n), y_min(n) and y(n).
 - Compute the DFTs of the signals y_ap(n), y_min(n) and y(n).
 - Plot the absolute values of Y_ap(f), Y_min(f) and Y(f) as a function of the normalized frequency axis starting from 0. Comment on the position/amplitude of the peaks you expect to see for every signal.
 - Provide some comments on the phase behaviour of Y_ap(f) and Y(f). Do you expect any phase jumps? Why?

Solutions

Ex.1

The z transform is:
$$H(z) = \frac{1 + \sqrt{2}z^{-1} + z^{-2}}{1 + 0.7 \cdot \sqrt{2}z^{-1} + 0.49z^{-2}}$$

The pole-zero plot is the following:

The amplitude response is:

The phase response is:

The jump of π degrees is clearly visible at the zero.

The sampled signal is:

$$x[n] = 10 + 5\cos\left(2\pi \frac{50}{200}n\right) + 7\sin\left(2\pi \frac{75}{200}n\right) =$$
$$= 10 + 5\cos\left(\frac{\pi}{2}n\right) + 7\sin\left(\frac{3}{4}\pi n\right)$$

In order to retrieve the amplitudes of the output we have to consider the 3 components at $\omega=0, \omega=\frac{\pi}{2}, \omega=\frac{3}{4}\pi$.

$$H(\omega = 0 \to z = 1) = \left| \frac{1 + \sqrt{2} + 1}{1 + 0.7\sqrt{2} + 0.49} \right| \approx 1.38$$

$$H\left(\omega = \frac{\pi}{2} \to z = j\right) = \left|\frac{1 - \sqrt{2}j - 1}{1 - 0.7\sqrt{2}j - 0.49}\right| \cong 1.27$$

$$H\left(\omega = \frac{3\pi}{4} \to z = e^{j\frac{3}{4}\pi}\right) = 0$$
 due to the zero on the unit circle

Ex.2

The linear convolution will give: $y[n] = \{2,2,1,-3,-3,1,0\}$

The **W** matrix will be:
$$W = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{bmatrix}$$

The DFT of the filter is:

$$H[k] = \begin{bmatrix} 0 \\ 2 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}$$

Since the filter h(n) has a length of 3 samples the circular convolution will give a circular tail of 3-1=2 samples.

To process the first block $x_1[n]$ of the input signal we must add 2 zeros before the first sample: the result will be:

$$X_{1}[k] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ -2+2j \\ 0 \\ -2-2j \end{bmatrix}$$

$$Y_{1}[k] = X_{1}[k] \cdot H[k] = \begin{bmatrix} 0 \\ -4 + 4j \\ 0 \\ -4 - 4j \end{bmatrix}$$

$$y_{1}[n] = W^{-1}Y_{1}[k] = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix} \begin{bmatrix} 0 \\ -4+4j \\ 0 \\ -4-4j \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ 2 \\ 2 \end{bmatrix}$$

The first two samples (in red) will be thrown away due to the unwanted effect of circular convolution.

Then I will restart the processing on the second block from the 1st sample of the input sequence:

$$X_{2}[k] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 6 \\ -1 - 3j \\ 4 \\ -1 + 3j \end{bmatrix}$$

$$Y_{2}[k] = X_{2}[k] \cdot H[k] = \begin{bmatrix} 0 \\ -2 - 6j \\ 0 \\ -2 + 6j \end{bmatrix}$$

$$y_{2}[n] = W^{-1}Y_{2}[k] = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix} \begin{bmatrix} 0 \\ -2 - 6j \\ 0 \\ -2 + 6j \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \\ 1 \\ -3 \end{bmatrix}$$

Again, the first two output samples must be thrown away.

The we have to repeat the procedure for the last two samples with thethird block starting from the 3rd sample:

$$X_{3}[k] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 3 \\ -1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 3+j \\ 4 \\ 3-j \end{bmatrix}$$

$$Y_3[k] = X_3[k] \cdot H[k] = \begin{bmatrix} 0\\6+2j\\0\\6-2j \end{bmatrix}$$

$$y_{3}[n] = W^{-1}Y_{3}[k] = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix} \begin{bmatrix} 0 \\ 6+2j \\ 0 \\ 6-2j \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ -3 \\ 1 \end{bmatrix}$$

Collecting the useful portions (black ones) of the results we obtain the same result of the linear convolution.

Ex.3 (MATLAB CODE)

```
close all
clearvars
clc
```

```
%% 1. [3 pt]
```

```
% The signal x(n) repeats periodically every 20 milliseconds and it is % sampled every 1 milliseconds. x(n) is composed of two cosinusoidal % contributions with frequencies f0 and f1 = f0/2. Define the signal % x(n) such that its DFT shows exactly 4 discrete pulses over one % frequency period and that x(n) has at least 150 samples.

P = 20e-3;
Ts = 1e-3;
% To find f0 and f1 frequencies, we need to consider that the overall % period of x(n) is the least common multiple between the two periods. % Let's impose this by reasoning in number of samples P_samples = P/Ts;
```

```
% P0 samples = 1/f0 norm;
% P1 samples = 1/f1 norm = 2/f0 norm = 2*P0 samples
% --> the least common multiple between PO samples and 2*PO samples =
% 2*P0 samples --> we impose it to be = P samples and we find f0 norm.
f0 norm = 2/P samples;
f1 \text{ norm} = f0 \text{ norm}/2;
% To have exactly four deltas in the DFT, the number of signal samples
% should be a multiple of the period.
% If we need to consider at least 150 samples, let's find the nearest
% integer multiple of the period which is greater or equal to 150.
min sample number = 150;
% put this number in ratio with P samples
num periodic repetitions = ceil(min sample number/P samples);
% number of samples
N = P samples * num periodic repetitions;
% define the discrete sample temporal axis (from 0 to N-1)
n = 0: N - 1;
% signal definition
x = cos(2*pi*f0 norm*n axis) + cos(2*pi*f1 norm*n axis);
%% 2. [5 pt]
% You are given a magnitude squared function M(z) with the following
% zeros-poles plot (check the text for the root values).
% Select the correct roots to define a causal stable real-valued all-
pass
% filter H ap(z). Define the filter H ap(z).
% Select the correct roots to define a causal stable real-valued
% minimum phase system H min(z) such to enhance the contribution in
% f0 and attenuate that in f1, and such that |H \min(f=0)| = 4.
% Define the filter H min(z).
% Define the filter H\left(z\right), whose all-pass/minimum-phase decomposition
% is defined by filters H ap(z) and H min(z).
% All-pass filter
% The only zero-pole combination which returns a causal stable real-
valued
% all-pass filter is: select poles in o and j; select zeros in c and
i.
% (zeroes and poles should be in conjugate reciprocal pairs)
poles = [.9*exp(1i*pi/10); .9*exp(-1i*pi/10)];
zeroes = 1./conj(poles);
B ap = poly(zeroes);
A ap = poly(poles);
% remember to adjust the gain such that |H| ap(f) | = 1 for each f
% we find c0 by substituting z = 1 (which corresponds to f = 0) in the
% polynomials
c0 = sum(A ap)/sum(B ap);
B ap = B ap * c0;
% to better analyze the filter (not required)
[H ap, omega] = freqz(B ap, A ap, 1024, 'whole');
```

```
figure,
plot(omega./(2*pi), abs(H ap));
title('|DTFT| of the filter H {ap}(z)');
xlabel('f [norm]');
% Minimum-phase filter
% f0 corresponds to omega 0 norm = pi/5
% f1 corresponds to omega 1 norm = pi/10
% zeros and poles should be inside the unit circle.
% to attenuate f1, select zeros in o and j.
% to enhance f0, select poles in a and h.
poles = [0.95*exp(1i*pi/5); 0.95*exp(-1i*pi/5)];
zeroes = [.9*exp(1i*pi/10); .9*exp(-1i*pi/10)];
B min = poly(zeroes);
A min = poly(poles);
% the gain in f = 0 should be = 4.
c0 = 4 * sum(A min)/sum(B min);
B \min = B \min * c0;
% to better analyze the filter (not required)
[H_min, omega] = freqz(B_min, A_min, 1024, 'whole');
plot(omega./(2*pi), abs(H min));
title('|DTFT| of the filter H {min}(z)');
xlabel('f [norm]');
% Filter H(z)
% to find it, exploit the convolution property
B = conv(B ap, B min);
A = conv(A ap, A_min);
% to better analyze the filter (not required)
[H, omega] = freqz(B, A, 1024, 'whole');
figure,
plot(omega./(2*pi), abs(H));
title('|DTFT| of the filter H(z)');
grid;
xlabel('f [norm]');
%% 3. [4.5 pt]
% Filter the signal x(n) with the three different filters,
% defining the signals y ap(n), y min(n) and y(n).
% Compute the DFTs of the signals y ap(n), y min(n) and y(n).
% Plot (with the stem function) the absolute values of Y ap(f),
% Y min(f) and Y(f) as a function of the normalized frequency axis
% starting from 0. Comment on the position/amplitude of the peaks
% you expect to see for every signal.
% Provide some comments on the phase behaviour of Y ap(f) and Y(f).
% Do you expect any phase jumps? Why?
% filter the signal
y = filter(B, A, x);
```

```
y ap = filter(B ap, A ap, x);
y min = filter(B min, A min, x);
% DFTs
Y = fft(y);
Y \min = fft(y \min);
Y ap = fft(y ap);
% normalized frequency axis:
freq axis = 0:1/N:1 - 1/N;
figure;
stem(freq axis, abs(Y));
title('Absolute value of the DFT of the signal y(n)');
grid;
xlabel('f [norm]');
% We expect to see mainly two peaks in f0 norm and 1 - f0 norm. The
% corresponding to f1 norm have been strongly attenuated by H(z).
figure;
stem(freq axis, abs(Y min));
title('Absolute value of the DFT of the signal y {min}(n)');
grid;
xlabel('f [norm]');
% We find basically no differences with respect to y(n). H(z) and
H \min(z)
% differ only for the all-pass component, which has no effect on the
% amplitude.
figure;
stem(freq axis, abs(Y ap));
title('Absolute value of the DFT of the signal y {ap}(n)');
grid;
xlabel('f [norm]');
% The peaks are basically the same as x(n), because the filter is an
all-pass
% phase behaviour of Y ap(f): we expect to see phase jumps, because
% all-pass filter which is stable and causal is maximum phase.
% phase behaviour of Y(f): we expect to see phase jumps as well,
% H(z) contains maximum-phase zeroes.
```