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A Digital filter has the following difference equation:
y[n] :x[n]+x/5x[n—1]+x[n—2]—0.7-\/Ey[n—l]—O.49y[n—2].
[4 pts] Provide the z transform of the filter and the pole-zero plot.

[4 pts] Depict an approximated representation of amplitude and phase response

[4 pts] The signal x(¢)=10+5cos(2750¢)+7sin(27z75t) is sampled at 200Hz and then filtered with

the previous filter. What will be the amplitude of the spectral components of the output?

Comment the results.

Asignal x[n]={2,2,3,~1} has to be filtered with the filter 4 ={1,0,—1}

[1 pt] Find the output signal y[n] working in the time domain.

We need to process the filter in real-time adopting the Overlap and Save approach and working in
the frequency domain with blocks of 4 samples.

[2 pts] Define the W matrix to retrieve obtain the DFT of the signal and the filter

[3 pts] Define the procedure to apply the Overlap and Save to this specific context and the
countermeasures to avoid unwanted effects of the circular convolution.

[4 pts] Report all the steps and the intermediate results of the Overlap and Save procedure in order

to get the same result y[n] of the first point.

CONTINUES ON THE BACK



1) [3 pt] The signal x(n) repeats periodically every 20 milliseconds and it is sampled every 1 milliseconds.
x(n) is composed of two cosinusoidal contributions with frequencies fO and f1 = f0/2. Define the signal
x(n) such that its DFT shows exactly 4 discrete pulses over one frequency period and that x(n) has at least

150 samples.
2) [5 pt] You are given a magnitude squared function M(z) with the following zeros-poles plot:
M(2): Pole-Zero Plot In particular, the root positions are:
a=0.95¢e’s, b=1.05¢’5, c=1.11e’10, d = 2e’1,
e =2, f= Ze_jl_c), g = 1.056_j3, h= 0.9Se_j§,
b d
a . i=1.11e~i5,j = 09¢ /i, k=1, | = 0.5¢/%, m = 0.5,
g = @ _i® i
s | o= n = 0.5e 71, 0 = 0.9¢’ 0.
- ' e
g 1 m ’k X (hints: in ¢, i, j, o there are both zeroes and poles; we don’t
'gu n’ . have roots with negative real part; all rational numbers are
£ Jeo:, i rounded by using two decimal digits).
h. , f. | e Select the correct roots to define a causal stable real-
8 valued all-pass filter H_ap(z). Define the filter H_ap(z).
o Select the correct roots to define a causal stable real-
valued minimum phase system H_min(z) such to
i ! | ! ! enhance the contribution in fO and attenuate that in
g g ! = 2 f1, and such that |H_min(f=0)| = 4. Define the filter
Real Part

H_min(z).
e Define the filter H(z), whose all-pass/minimum-phase
decomposition is defined by filters H_ap(z) and
H_min(z).
3) [4 pt] Filter the signal x(n) with the three different filters, defining the signals y_ap(n), y_min(n) and y(n).
e Compute the DFTs of the signals y_ap(n), y_min(n) and y(n).
e Plot the absolute values of Y_ap(f), Y_min(f) and Y(f) as a function of the normalized frequency axis
starting from 0. Comment on the position/amplitude of the peaks you expect to see for every signal.
e Provide some comments on the phase behaviour of Y_ap(f) and Y(f). Do you expect any phase
jumps? Why?



Solutions

Ex.1

-1 -2
The z transform is: H(z) I+ \/EZ tz

14074227 +0.4922

The pole-zero plot is the following:
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The amplitude response is:
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The phase response is:
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The jump of 7 degrees is clearly visible at the zero.

The sampled signal is:

x[n]=10+5cos 27rﬂn +7sin 27r£n =
200 200

=10+5005[£n +7sin E7m
2 4

In order to retrieve the amplitudes of the output we have to consider the 3 components at

LoVl |5
+0.742 +0.49|

H(a)=0—>z=1)=|1

1-v2j-1

|;1.27
1-0.7+/2—0.49

o(o-5-1)

RY/4 S .
H[a) = T —>z= ej4 J =0 due to the zero on the unit circle

Ex.2
The linear convolution will give: y[n] = {2,2,1,—3,—3,1,0}

1
The W matrix will be: W = {



The DFT of the filter is:

0 1 1 1 1

2 1 —j -1 |0
H[k]: = A S

0 1 -1 1 1 1

2 1 ;j -1 —j|| 0

Since the filter h(n) has a length of 3 samples the circular convolution will give a circular tail of 3-1=2

samples.

To process the first block x, [n] of the input signal we must add 2 zeros before the first sample: the

result will be:

1 1 1 1700 4
1 -5 -1 |0 2427
Xl[k]:1 11 -1ll217] o
1 -1 —jl2]| |—2=2)
0
—4+4;
Y [k]= X, [k]-H[K]= 0
44
1111 0 )
PN | § T S R R ) )
nll=mxlkl=20 50 S o T .
1= -1 j||-4-4;] |2

The first two samples (in red) will be thrown away due to the unwanted effect of circular convolution.

Then | will restart the processing on the second block from the 15 sample of the input sequence:

1 1 1 112 6

1 —j -1 ;|2 -1-3;5
Xz[k]: B N =

1 -1 1 1] 3 4

1 7 -1 —j|-1] |-1+3j

2-6j
0
246

VK= X[k H =]



111 0 1
11 -1 —j|l—2-6j| |3
41 -1 1 <1 o | 7|1

1 —j -1 j|—2+6j] |3

AOREANE

Again, the first two output samples must be thrown away.

The we have to repeat the procedure for the last two samples with thethird block starting from the 3rd
sample:

1 1 113 2

1

1 —j =1 j|l-1] |3+
X3[k]:1 =
1

0
Y, [k] = X, [k]- H[¥] = 6+021'
6-2J |
1 1 1 17 o ;
R ] AR
1

Collecting the useful portions (black ones) of the results we obtain the same result of the linear
convolution.

Ex.3 (MATLAB CODE)

close all

clearvars
clc
%% 1. [3 pt]

o°

The signal x(n) repeats periodically every 20 milliseconds and it is
sampled every 1 milliseconds. x(n) is composed of two cosinusoidal
contributions with frequencies f0 and f1 = f0/2. Define the signal

x (n) such that its DFT shows exactly 4 discrete pulses over one
frequency period and that x(n) has at least 150 samples.

o° o o°

o°

avl

= 20e-3;
Ts = le-3;

o°

To find f0 and fl frequencies, we need to consider that the overall
period of x(n) is the least common multiple between the two periods.
Let's impose this by reasoning in number of samples

_samples = P/Ts;

o° oP

o]



o°

PO _samples = 1/f0 norm;

Pl samples = 1/fl norm = 2/f0 norm = 2*P0_samples

-—> the least common multiple between PO _samples and 2*P0_samples =
2*P0_samples --> we impose it to be = P _samples and we find £0 norm.
f0 norm = 2/P_samples;

fl norm = f£0 norm/2;

o° o©

o°

o°

To have exactly four deltas in the DFT, the number of signal samples
should be a multiple of the period.

If we need to consider at least 150 samples, let's find the nearest
integer multiple of the period which is greater or equal to 150.

min sample number = 150;

% put this number in ratio with P samples

num periodic repetitions = ceil (min sample number/P_ samples);

number of samples

P samples * num periodic_repetitions;

o° oP

o°

N

% define the discrete sample temporal axis (from 0 to N-1)
n axis = 0: N - 1;

o°

signal definition
= cos (2*pi*f0 norm*n axis) + cos(2*pi*fl norm*n axis);

b

o°

$ 2. [5 pt]

o°

You are given a magnitude squared function M(z) with the following
zeros—-poles plot (check the text for the root wvalues).

Select the correct roots to define a causal stable real-valued all-
ass

filter H ap(z). Define the filter H ap(z).

Select the correct roots to define a causal stable real-valued
minimum phase system H min(z) such to enhance the contribution in
f0 and attenuate that in fl, and such that |H min(f=0)]| = 4.
Define the filter H min(z).

Define the filter H(z), whose all-pass/minimum-phase decomposition
is defined by filters H ap(z) and H min(z).

o°

o°

o A0 o° o° d° o° o T

o°

All-pass filter

The only zero-pole combination which returns a causal stable real-
valued

all-pass filter is: select poles in o and j; select zeros in c¢ and

o°

o°

i.

% (zeroes and poles should be in conjugate reciprocal pairs)
poles = [.9%exp (1li*pi/10); .9%exp(-1i*pi/10)];

zeroes = 1./conj (poles);

B ap = poly(zeroes);

_ap = poly(poles);
remember to adjust the gain such that |H ap(f)| = 1 for each £

we find cO0 by substituting z = 1 (which corresponds to £ = 0) in the
polynomials

0 = sum(A_ap)/sum(B_ap);

~ap = B ap * cO;

o° o oo

o Q

% to better analyze the filter (not required)
[H ap, omega] = freqz(B ap, A ap, 1024, 'whole');



figure,

plot (omega./ (2*pi), abs(H ap));
title('|DTFT| of the filter H {ap}(z)');
grid;

xlabel ('f [norm]"');

o

Minimum-phase filter

f0 corresponds to omega 0 norm = pi/5

fl corresponds to omega 1 norm = pi/10

zeros and poles should be inside the unit circle.
to attenuate fl, select zeros in o and j.

to enhance f0, select poles in a and h.

poles = [0.95%exp(1li*pi/5); 0.95*exp (-1li*pi/5)1;
zeroes = [.9%exp(li*pi/10); .9%*exp(-1i*pi/10)];
B min = poly(zeroes);

A min = poly(poles);

% the gain in £ = 0 should be = 4.

cO = 4 * sum(A min)/sum(B min);

B min = B min * cO;

o° o oo oe

o°

% to better analyze the filter (not required)

[H min, omegal] = freqz (B min, A min, 1024, 'whole');
figure,

plot (omega./ (2*pi), abs(H min));

title('|DTFT| of the filter H {min} (z)'");

grid;

xlabel ('f [norm]');

Filter H(z)

to find it, exploit the convolution property
= conv (B ap, B min);

conv (A ap, A min);

> 0 oo oe

o°

to better analyze the filter (not required)
[H, omega] = freqz (B, A, 1024, 'whole');
figure,

plot (omega./ (2*pi), abs (H)):;

title (' |DTFT| of the filter H(z)');

grid;

xlabel ('f [norm]');

o°

5 3. [4.5 pt]

o

Filter the signal x(n) with the three different filters,
defining the signals y ap(n), y min(n) and y(n).

Compute the DFTs of the signals y ap(n), y min(n) and y(n).

Plot (with the stem function) the absolute values of Y ap(f),

Y min(f) and Y(f) as a function of the normalized frequency axis
starting from 0. Comment on the position/amplitude of the peaks
you expect to see for every signal.

Provide some comments on the phase behaviour of Y ap(f) and Y(f).
Do you expect any phase jumps? Why?

o° o© o° o od° o° o°

o°

o°

filter the signal
= filter (B, A, Xx);

S



y ap = filter (B ap, A ap, X);

y min = filter (B min, A min,

% DFTs

Y = fft(y);

Y min = fft(y min);
Y ap = fft(y ap);

(o

% normalized frequency axis:
freq axis = 0:1/N:1 - 1/N;

figure;
stem(freq axis, abs(Y));
title ('Absolute value of the

the signal y(n)"');

grid;

xlabel ('f [norm]');

% We expect to see mainly two peaks in f0 norm and 1 - £0 norm. The
peaks

Q

figure;
stem(freq axis, abs(Y min));

% corresponding to fl norm have been strongly attenuated by H(z).

title('Absolute value of the DFT of the signal y {min} (n)"');

grid;
xlabel ('f [norm]');

% We find basically no differences with respect to y(n). H(z) and

H min(z)

¢}

% amplitude.

figure;
stem(freq axis, abs(Y ap)):;

% differ only for the all-pass component,

which has no effect on the

title ('Absolute value of the DFT of the signal y {ap}(n)');

grid;
xlabel ('f [norm]');

Q.

all-pass

% phase behaviour of Y ap(f):
every

% The peaks are basically the same as x(n), because the filter is an

we expect to see phase jumps, because

% all-pass filter which is stable and causal is maximum phase.
% phase behaviour of Y (f): we expect to see phase jumps as well,

because

Q

% H(z) contains maximum-phase zeroes.



