Multimedia Signal Processing 1* Module and
Fundamentals of Multimedia Signal Processing

date: September 7t, 2023

A causal digital FIR filter with real coefficients, H(a)) , has the following magnitude response:

Magnitude Response
T T T

Magnitude

I 1 I I I I I I .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Normalized Frequency (x 7 rad/sample)

[2 pts] Depict a possible zeros-poles plot.

[4 pts] Find a possible z-transform H(z) of the filter and calculate its finite differences equation.

Assignal x(t)= 10+500$(27r~5 : 1031) +10005(27z-15-103t) is sampled at 30kHz and then filtered

with H(z),

[6 pts] what will be the signal y(n)=... at the output of the filter?

A signal has a frequency band limited between 0 and 30kHz. It is sampled at 120 kHz and we need to
resample it at 80 kHz.

[3 pts] Describe all the processing steps in order to obtain the resampled signal

[6 pts] Represent graphically the spectrum (with normalized frequencies) of the signal at each step
of the resampling procedure.

CONTINUES ON THE BACK

1)

2)

3)

4)

5)

[2 pt] We need to convert the sampling rate of a digital system from 1KHz to 600Hz. Build an FIR filter

with 61 samples to enable the sampling rate conversion of the signals.

[2 pt] A sinusoidal signal x, with two frequency components and duration 0.5 seconds, enters the

system. Build this signal such that, after the sampling rate conversion, only one component is kept

and the other is filtered out. You choose the frequency components, motivating your choice.

[3 pt] Implement the interpolation part of the sampling rate conversion of x. In particular, to do so,

consider each of the following possibilities (hint: be careful in selecting the correct signal to be

filtered, which is not x...):

e Use the function “conv” to filter the signal, defining the signal y.

e Use the function “overlap_add.m” to filter the signal, defining the signal z.

e Use the function “overlap_save.m” to filter the signal, defining the signal w.

o The last two functions do not need to be written, take them for granted. They require as input
parameters, in this order: the signal to be filtered, the FIR filter to use, the amount of signal
samples to filter at a time (block-size); they return the filtered signal with the Overlap and Add
and Overlap and Save techniques, respectively. You choose the parameters.

e Plot the signals y, z and w in the same figure. How are they related? Which is the signals’ length?

[2.5 pt] Instead of (3), implement the filtering process by computing the element-wise product between

the signal and the filter in the DFT domain. Compute the DFT over the length of the input signal. Define

the final signal as u.

e Are there any differences between u and y, zand w? If yes, in which samples? Why?

e If needed, select the minimum possible number of DFT samples to correct the result.

[2.5 pt] Select one of the signals y, z, w, u to complete the correct sampling rate conversion chain.

e Compute the DFT of the signal x and that of the selected signal over 2048 samples.

e Plot the absolute values of DFTs as a function of normalized frequencies.

e Comment on the position of all the peaks.

Solutions

. T
The filter frequency response presents two frequencies with zero magnitude in @ =0 andin w=—,

furthermore its amplitude at the Nyquist frequency is 6.
Since the filter has real coefficients, it will have just real or complex conjugate features, i.e. it will

. T . .
present a zero at @ =0 and a couple on conjugate zeros at @ = J_rg . The filter will not present poles

T
out of the origin. Since the filter removes completely the frequencies at ® =0 and at wzig , the

zeros will be on the unit circle of the pole-zero plot and, for the causality, three poles will be placed
in the origin. A possible implementation could be:

_ T _ _ _ _ - _
H(z)=4-(1-z 1)(1—2~c0s(§jz 1+1]:A(1—z Ni-z"+22)=4(1-22"+227 - 27).
Imposing the value of 6 at the Nyquist means:

H(z=-1)=6=A(1+2+2+1)=6=>4=1.

Which gives the following pole-zero plot:

Pole-Zero Plot
T

Imaginary Part
o
X:

L i L L
-1 -0.5 0 0.5 1
Real Part

The signal sampled will be:

3 3
x[n]=10+5cos| 27 - > 103n +10cos 27z~&n =
30-10 30-10
r
:10+500s[§nj+1000s(7rn)

The filter H(z) will completely remove the first two components and amplify the Nyquist

component:

y[n]=6-10cos(zn)=60cos(7zn)

Ex

.2

Since the signal is resampled from 120 kHz to 80 kHz, it means that it has to be upsampled of an

T

order of 2 (L=2), filtered with a low pass filter with a cut-off at @, =? and downsampled of an

order of 3 (M=3).

C
C

X($)

>
i SAVPLIN 6 kH%
NXS P 'AA\;?
30 8o 420 k2

F%Eb

o) UPSarfu -
-25)17 T . ?kza— w-/(/
X
N

4 - ‘s
5 |
Z'f%/ ZS-rU/”\N— S 2'?# zi uw{/j

N

w) Flove Riprg. *
A2
YoWN S A0 IPLI WG

ﬂ,/f_

Br T 2 zir ol
L, i1 53
Ex.3 (MATLAB CODE)
lose all
learvars
1lc

C

%% 1. [2 pt]

% Build an FIR filter with 61 samples to enable the sampling rate
conversion

[

% of the signals.

Fs
s

=

e3;
0.

53|
=l

0e3;

to find L and M --> rat(Fs_1/Fs) = 3/5 = L/M
= 5;

= B oo

% define the filter

cutoff = min([1/(2*L), 1/(2*M)1);

cutoff filter = 2*cutoff;

N = 61;

% the order is N-1

h multirate = L*firl(N-1, cutoff filter);

oe

% 2. [2 pt]

oe

A sinusoidal signal x, with two frequency components and duration 0.5
seconds, enters the system. Build this signal such that, after the
sampling rate conversion, only one component is kept and the other is
filtered out. You choose the frequency components, motivating your
choice.

o° o

oe

oe

If one frequency component is filtered out, it means that, after the
upsampling, there is one frequency component > cutoff = 1/10.
Therefore, we have to select a frequency component that, divided by L
(due to the upsampling), is larger than 1/10 --> f1/L >= 1/10 --> f1

o° o\

oe

>=

$ L/10 --> f1 >= 0.3.

% The remaining component should be f2 <= 0.3.

% for example, we can select these two contributions
f1 = 0.4;

f2 = 0.06;

% define the signal
time axis = 0:1/Fs:.5;
X = cos(2*pi*fl*Fs*time axis) + cos(2*pi*f2*Fs*time axis);

%% 3. [3 pt]
% Implement the interpolation part of the sampling rate conversion of

% In particular, to do so, consider each of the following possibilities
% (hint: be careful in selecting the correct signal to be filtered,

$ which is not x):

% Use the function conv to filter the signal, defining the signal y.

% Use the function overlap add.m, defining the signal =z.

% Use the function overlap save.m, defining the signal w.

% The last two functions require as input parameters, in this order:

% the signal to be filtered, the FIR filter to use, the amount of
signal

% samples to filter at a time (block-size); they return the filtered
signal

with the Overlap and Add and Overlap and Save techniques,
respectively.

% You choose the parameters.

% Plot the signals y, z and w in the same figure. How are they related?

o

% Which is the signals’ length?

% first, we need to upsample the signal x
X up = zeros(l, length(x) * L);
X up(l:L:end) = x;

% the signal to be filtered is x up, not x

% conv
y = conv(x_up, h multirate);

% the block-size should be larger than the filter length
% for instance, we can select:

B = length(h multirate) + 10;

z = overlap add(x up, h multirate, B);

w = overlap save(x up, h multirate, B);

% plot

figure;

plot(y);

hold on;

plot(z, '--");

plot(w, '—-.");

grid;

legend('y', 'z', 'w');

o

the three signals are the same signal, as we implemented the linear
convolution in three different ways.
the signals' length is = length(x up) + length(h multirate) - 1

o°

oe

oe

% 4. [2.5 pt]

o

Instead of (3), implement the filtering process by computing the
element-wise product between the signal and the filter in the DFT
domain.

Compute the DFT over the length of the input signal.

Define the final signal as u.

Are there any differences between u and y, z and w?

If yes, in which samples? Why?

If needed, select the minimum possible number of DFT samples to
correct

% the result.

oe

o o° o oP

o

X up = fft(x up);
H = fft(h multirate, length(x up)):;
u = 1fft (X up.*H);

oo

the signal u is different from y, z and w.

first, the length corresponds to the length of x up, which is lower
than

the length of the other signals.

second, there are cyclic convolution artifacts in the first
ength (h multirate) - 1

% samples.

% to visualize these artifacts (not required):
plot(u, 'o-");

o o

= oe

% to obtain the same result, we need to select a number of samples for

-
oy
(0]

% DFT equal to the length of the linear convolution

o°

length(x up) + length(h multirate) - 1

up = fft(x up, length(x up) + length(h multirate) -1);
fft(h multirate, length(x up) + length(h multirate) -1);
ifft (X up.*H);

X_
H
u

% now the result is the same as y, z, w (not required):
plot(u, 'x--');

grid;
legend('y"',

z', 'w', 'u', 'u (correct)');

o°

% 5. [2.5 pt]

% Select one of the signals y, z, w, u to complete the correct sampling
rate

conversion chain.

Compute the DFT of the signal x and that of the selected signal over
2048

samples.

Plot the absolute values of DFTs as a function of normalized
requencies.

Comment on the position of all the peaks.

oe

o o

Hh oe

oe

oe

all the signals are equal; for example, we can select y.
_down = y(1l:M:end);

b

ft

n fft = 2048;

X updown = fft(x down, n fft);

X = fft(x, n_fft);

norm freq axis = 0:1/n fft:1 - 1/n fft;

oe
Hh Q.

figure;

plot (norm freq axis, abs(X));

hold on;

grid;

stem(norm freq axis, abs (X updown));

% in X, we find two peaks in fl and f2 and the symmetric ones.
% in X updown, we find only one peak centered in f2/L*M and the
symmetric

% one. The fl-component has been filtered out by the filter.

%% functions (not required)
function [filtered signal] = overlap add(signal, filter, L)
Lconv = L + length(filter) - 1;

% fft of the filter over Lconv samples
filter £ = fft(filter, Lconv);

% auxiliary variable
ux = signal;

b
[4))

% index for the blocks
=1;

o

while true

% select the signal block
X block = x aux(1l:L);

[

% fft of the signal block over Lconv samples

X block = fft(x block, Lconv);

% result of the cyclic conv over Lconv samples
y block = ifft(X block .* filter f);

if b ==
y _oa = y block;
else
% 1f the block is not the first one, add L zeros at the end of
% the signal y oa to contain the new samples related to the
block
y_oa = padarray(y oa, [0, L], 'post');
% put the result in the right position
y oa(l + (b-1)*L:end) =y oa(l + (b-1)*L:end) + y block;
end

% update blocks
b + 1;

o
I

% delete the already processed block
aux = X aux(L+l:end);

X

% 1f the number of remaining samples is less than the block size,
stop
if length(x aux) < L
break
end

end

% consider the last block of the signal

(operations to be done are the same as in the while loop)
x block = x_aux;

X block = fft(x block, Lconv);

y block ifft (X block .* filter f);

y_oa = padarray(y oa, [0, L], 'post');

y oa(l + (b-1)*L:end) = y oa(l + (b-1)*L:end) + y block;

o°

% delete the final zeroes
filtered signal = y oa(l:length(signal) + length(filter) -1);

end
function [filtered signal] = overlap save(signal, filter, L)

[

% number of wrong samples due to the cyclic conv = overlap size.
overlap = length(filter) - 1;

oe

initialize the output signal (this will be the concatenation of the
% results related to each block, without overlap)
y_os = [1;

% fft of the filter over L samples
filter £ = fft(filter, L);

% auxiliary variable
X _aux = signal;

o°

add P - 1 zeros at the beginning
X_aux padarray (x_aux, [0, overlap], 'pre');

index for the blocks

O oe

while true

% select the signal block
X block = x aux(1l:L);

% fft of the signal block over L samples
X block = fft(x block, L);

% result of the cyclic conv over L samples
y block = ifft(X block .* filter f);

% delete the first P - 1 samples
y _block = y block(overlap + l:end);

% concatenate the result

y os = [y os, y block];
% update blocks
b=Db+ 1;

o

delete the already processed block, but take the next one with an
% overlap = P - 1 samples
ux = x_aux(L + 1 - overlap:end);

X
o)

[

% if the number of remaining samples is less than the block size,
stop
if length(x aux) < L
break
end

end
% consider the last blocks of the signal (operations to be done are the
same

[

% as in the while loop)

X block = x_aux;
X block fft(x block, L);
y block = ifft(X block .* filter f);
y_block y block(overlap + l:end);
y os = [y os, y block];
% for managing the last blocks
n last blocks = ceil(length(x aux) / (L + 1 - overlap));
for last block idx = 1:n last blocks
x block = x aux(l + (L - overlap)*last block idx:end);
X block = fft(x block, L);
y_block ifft (X block .* filter f);
y _block = y block(overlap + l:end);
y os = [y os, y block];
end

% delete the final zeroes
filtered signal = y os(l:length(signal) + length(filter) -1);

end

