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The DFT X [k] of a digital signal x[n] is made of 32 values, from X[1] to X [32]. All of them are zero
with the exception of X [1]=32, X[3]=16] and X[31]=-16].

[2 pts] Describe the procedure to retrieve the signal x[n] from its DFT X [k].
[4 pts] Find the signal x[n].

[5 pts] Downsampling the signal of an order of 2 (M=2) what will be the output in the time domain
X’[n] and in the frequency domain X '[k] ?

A FIR filter h,[n] is the sequence of two filters:

—» h, | h —

h[n]=8[n]-&[n-2]and h,[n]=5[n]-~25[n-1]+5[n-2].
[3 pts] Describe how to obtain the expression of h,, [n] in the time domain and provide its z transform.

[2 pts] Are h [n] and/or h,[n] and/or hy,[n] linear filters? Justify your answer.

[3 pts] Provide an approximate representation of the amplitude response of the filter.
An input signal X(t) =3+ cos(274000t)+3-sin(278000t) is sampled at 16kHz and filtered with h,,[n].

[3 pts] What components will be present at the output? With which amplitude?

CONTINUES ON THE BACK



4)

5)

[1.5 pt] The signal x(t) is a cosine with frequency 2.5 KHz, with period 8 samples and defined over 1000

samples. Define the signal.

[1.5 pt] The signal x(n) is summed to a periodic sequence y(n) = [2, 0, -2, 0, 2, 0, -2, O, ...]. Define the

output signal as z(n), which has the same number of samples of x.

[4.5 pt] Design three different filters (with real coefficients, causal and stable):

e H1(z), which should attenuate the y component from z(n);

e H2(z), which should completely remove the y component from z(n), without altering the rest of the
signal;

e H3(z), which should keep the magnitude of all sighal components.

The three filters should share the same angular position of their zeroes in the z-plane. If possible, use

minimum phase filters. The gain of each filter at frequency = 0 should be fixed at 1.

[2.5 pt] By using the function ‘freqz’ over 2048 samples, plot the absolute value of the frequency response of

each filter over the entire frequency spectrum in normalized domain.

e  For each plot, comment precisely on what you expect to see.

e For each filter, filter the signal z, defining z_1, z_2, z_3 signals.

[1 extra pt] If you have available only signals z and z_3, is there a way to find an equivalent version of the

signal z_2 which does not imply using the filter H2(z)? If yes, combine the two signals (z and z_3) accordingly

and define the signal z_4.



Solutions

Ex.1

1%t part: see the lecture related to the inverse Discrete Fourier Transform

2" part:
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3" part:
. 1
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X '[k] will be zero for all the values with the exception of X '[1]=8, X'[3]=8] and X [l1]=-8] , i.e.,
X '[k]=16-8[1] -8 5[3]+8]-5[15].

Ex.2
h, [n]=h[n]*h,[n]= {L—ﬁ,onﬁ,—l} —>H(z)=1-v2z"+227° -z

Just h, [n] is a linear phase filter due to its even symmetry.

The amplitude response of h,[n] is:
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The sampled signal is X[n]=3+cos 27z4'103n +3-sin| 27 8'103n =3+cos| Zn +3-sin(zn) and
16-10 16-10 2

the filter will remove the continuous frequency and the sinusoid at the Nyquist frequency.

The amplitude of the filter at % will be ‘H (z =el? = j)‘ =‘1+\/§j +\/5j —1‘ =242 sothat the

amplitude of the input cosinusoid will be amplified by that value.

Ex.3 (MATLAB CODE)

close all
clearvars
clc

% 1 [1.5 pt]

% The signal x(t) is a cosine with frequency 2.5 KHz, with period 8
samples
% and defined over 1000 samples. Define the signal.

N = 1000;
fl = 2.5e3;
pl_samples = 8;

% we have to find Fs. To do so:
= 1/f1l; % period in seconds
Fs = pl_samples/pl;

time_axis = 0:1/Fs:(N-1)/Fs;

% define the signal
X = cos(2*pi*fl*time_axis);

%% 2 [1.5 pt]

% The signal x(n) is summed to a periodic sequence y(n) = [2, 0, -2, 0, 2,
0, -2, 0, .]-

% Define the output signal as z(n), which has the same number of samples
of x.

% Notice that the sequence is a sinusoidal sequence with period = 4.
f2_n = 1/4;

y = 2 * cos(2*pi*f2_n*(0:N-1));

zZ =X +Yy;

%% 3. [4.5 pt]

% Design three different filters (with real coefficients, causal and
stable):

% H1(z), which should attenuate the y component from z(n);

% H2(z), which should completely remove the y component from z(n),

% without altering the rest of the signal;

% H3(z), which should keep the magnitude of all signal components.

% The three filters should share the same angular position of their
% zeroes in the z-plane. If possible, use minimum phase filters.

% The gain of each filter at frequency = 0 should be fixed at 1.



%

Filter H1(z) should attenuate the y component
--> let"s consider two zeroes at phase = 2*pi*1/4 = pi/2

rho_z = 0.95; % for the minimum phase

B 1 =1[1, 0, rho_z"2];

Al =1;

% the gain of the fTilter at frequency = 0 should be fixed at 1
B 1=B1/ sun(B_1(:));

% Filter H2(z) should be a notch

% --> two zeros at pi/2 with abs value = 1

% --> two poles at pi/2 with abs value < 1

rho z = 1;

rho_ p = 0.95;

B 2 =11, 0, rho_z"2];

A 2 =11, 0, rho_p"2];

% the gain of the Filter at frequency = 0 should be fixed at 1
B2 =B2*sum(A_2(:)) /7 sum(B_2(:));

%
%

Filter H3(z) should be an all-pass

--> two zeros at pi/2 with abs value > 1 (for building a causal stable
filter)

--> two poles at pi/2 with abs value = 1/(abs value of the zeroes)

We can build the numerator and then find the denominator such that
denominator coefficients = conj(Fliplr(numerator coefficients))

[1, O, rho_z"2];

z =1.2;
= [rho_z~2, 0, 1];

%% 4. [2.5 pt]

%

By using the function ,freqz over 2048 samples, plot the absolute value
of the frequency response of each Filter over the entire frequency
spectrum in normalized domain.

For each plot, comment precisely on what you expect to see.

For each filter, filter the signal z, defining z_ 1, z 2, z_3 signals.

H1 filter behaviour

[H, omega] = freqz(B_1, A 1, 2048, “whole");
figure,

plot(omega./(2*pi), abs(H));

title("|DTFT] of the Ffilter H_1(F)");

grid;

%

X

0

X

0

The gain at ¥ = 0 should be 1. We expect a bell shape with minimum in F
1/4 until ¥ = 1/2. Then, everything after ¥ = 1/2 is symmetric.

filter behaviour

[H, omega] = freqz(B_2, A 2, 2048, “whole®);
figure,

plot(omega./(2*pi), abs(H));

title("|DTFT|] of the Filter H_2(F)");

grid;



% The gain at f = 0 should be 1. We expect more or less a flat behaviour
v For all frequencies, except for f = 1/4 in which there is a strong
o localized attenuation. Everything is symmetric after f = 1/2.

© o

X

v Filter behaviour

[H, omega] = freqz(B_3, A 3, 2048, “whole");
figure,

plot(omega./(2*pi), abs(H));

title(C"|DTFT] of the filter H_ 3(F)");

grid;

% We expect more or less a flat behaviour, with gain = 1, for all
frequencies

% filter the signal z

z 1= Ffilter(B_ 1, A 1, 2);
z 2 = Tilter(B_2, A 2, 2);
z 3 = Filter(B_3, A 3, 2);

%% 5. [1 extra pt]

% 1T you have available only signals z and z_3, i1s there a way to find an
% equivalent version of the signal z_2 which does not imply using the
filter H2(z2)?

% I1f yes, combine the two signals (z and z_3) accordingly and define the
signal z_4.

% We can build the result of the notch filter by averaging the initial
% signal and its all-pass Tiltered version (see previous exams)
z4=(z+z3) /7 2;

% Not required:

% The resulting output filter = (1 + H_3(2))/2 would be
rho z = 1.2;

B 4= (1 + rho_z"2)/2*[1, 0, 1];

A 4 = [rho_z"2, 0, 1];

% filter behaviour

[H, omega] = freqz(B_4, A 4, 2048, “whole");
figure,

plot(omega./(2*pi), abs(H));

title("|DTFT] of the Ffilter H_4(F)");

grid;



