Multimedia Signal Processing 1st Module and Fundamentals of Multimedia Signal Processing

Date: June 19th, 2023

Ex.1 (Pt.13)

A digital filter has the following difference equation:

$$y[n] = \frac{1}{9} \left(6\sqrt{2}y[n-1] - 4y[n-2] + 4x[n] - 6\sqrt{2}x[n-1] + 9x[n-2] \right)$$

[4 pts] What is the transfer function H(z) of such a filter?

Draw its pole-zero plot. What kind of filter is it?

[4 pts] Draw its approximated amplitude and phase response in normalized frequencies.

[4 pts] A continuous signal $x(t) = 5\cos(2\pi 1000t) + 7\cos(2\pi 4000t)$ is sampled at 8kHz and then filtered with the previously defined filter. What will be output discrete signal y[n]?

Ex.2 (Pt.8)

The continuous signal $x(t) = 6\sin(\omega_1 t) - 6\sin(\omega_2 t)$, where $\omega_1 = 2\pi \cdot 75kHz$ and $\omega_2 = 2\pi \cdot 125kHz$, is sampled at 600kHz.

[2 pts] Analyze the signal in the frequency domain and depict the signal in the $0-2\pi$ pulsations range.

The signal is then downsampled without any lowpass filter of an order of M=3.

[3 pts] what will be the output signal? Describe the reason for such an output.

[3 pts] provide a suitable discrete filter to remove/attenuate any undesired effect ad depict the output signal.

CONTINUES ON THE BACK

Ex.3 (Pt.11)

- 1) [3 pt] Define the sinusoidal signal x(t), which is composed of two contributions at f1 = 2 KHz and f2 = 1.25 KHz. The signal is sampled such that it repeats periodically every 40 samples, and it is defined over 400 samples. Plot the signal as a function of the time [seconds].
- 2) [3 pt] We want to enhance the contribution at f1 and to lower down that of f2. To do so, we are given an LTI system H_1(z), causal and stable, with real coefficients and minimum phase, with this finite-difference equation:

$$y(n) = a*x(n) + b*x(n-1) + c*x(n-2) + d*y(n-1) + e*y(n-2).$$

- Choose the values of parameters a, b, c, d, e such that h_1(n=0) = 1.5.
- Filter the signal x(n) with H_1(z), defining the signal y(n).
- 3) [2.5 pt] The signal y(n) is summed to a periodic sequence = [1, 0, -1, 0, 1, 0, -1, 0...]. Define the output signal as z(n). Design the filter H_2(z), which is defined by the same finite-difference equation of H_1(z) but with different coefficients, to maintain only the signal y(n) from the signal z(n). Filter the signal z(n), defining the signal w(n).
- 4) [2.5 pt] Compute the DFTs of the signals x(n), y(n), z(n), w(n) and plot their absolute values as a function of the normalized frequency axis. Comment on the position/amplitude of the peaks you expect to see for every signal.
 - Which are the differences between the DFTs of y(n) and z(n)?
 - Which are the differences between the DFTs of y(n) and w(n)? Motivate your answers.

Solutions

Ex.1

The filter has the following z transform associated to the difference equation:

$$H(z) = \frac{4 - 6\sqrt{2}z^{-1} + 9z^{-2}}{9 - 6\sqrt{2}z^{-1} + 4z^{-2}}$$

It is an all-pass filter, it is also a causal, stable and maximum phase filter.

Its zero-pole plot is the following:

Since it is an all-pass filter its amplitude is constant across all frequencies. In this case the amplitude is always 1.

The phase has the following behavior:

By construction we can say that the couples of conjugate zeros and conjugate poles are at the normalized frequency $\frac{\pi}{4}$ indicating that at that frequency we will have a phase rotation of π rads.

The sampled signal will have the following discrete representation:

$$x[n] = 5\cos\left(\frac{\pi}{4}n\right) + 7\cos\left(\pi n\right)$$

The first component at 1kHz will then undergo a phase rotation of 180° while the second component, at the Nyquist frequency, will preserve its phase. The output will then be:

$$y[n] = -5\cos\left(\frac{\pi}{4}n\right) + 7\cos(\pi n).$$

Ex.2

The sampled signal will present impulses at the following normalized frequencies:

$$\overline{\omega}_1 = \frac{2\pi 75 kHz}{600 kHz} = \frac{\pi}{4}$$
 and $\overline{\omega}_2 = \frac{2\pi 125 kHz}{600 kHz} = \frac{5\pi}{12}$, in the frequency domain it can be represented as:

$$X(\omega) = 3j \cdot \delta(\omega - \overline{\omega}_1) - 3j \cdot \delta(\omega - (2\pi - \overline{\omega}_1)) - 3j \cdot \delta(\omega - \overline{\omega}_2) + 3j \cdot \delta(\omega - (2\pi - \overline{\omega}_2))$$

With the simple downsampling I will obtain:

$$\overline{\overline{\omega}}_1 = 3\overline{\omega}_1 = \frac{3}{4}\pi$$
 and $\overline{\overline{\omega}}_2 = 3\overline{\omega}_2 = \frac{5}{4}\pi$

So:
$$X_d(\omega) = \frac{1}{3} \left(3j \cdot \delta(\omega - \overline{\omega}_1) - 3j \cdot \delta(\omega - (2\pi - \overline{\omega}_1)) - 3j \cdot \delta(\omega - \overline{\omega}_2) + 3j \cdot \delta(\omega - (2\pi - \overline{\omega}_2)) \right)$$

But $2\pi - \overline{\overline{\overline{\omega}}}_1 = 2\pi - \frac{3}{4}\pi = \frac{5}{4}\pi = \overline{\overline{\overline{\omega}}}_2$ and $2\pi - \overline{\overline{\overline{\omega}}}_2 = 2\pi - \frac{5}{4}\pi = \frac{3}{4}\pi = \overline{\overline{\overline{\omega}}}_1$ so, due to the downsampling without antialising filter, the two sinusoids, due to the opposite sign, will cancel each other out.

Introducing a low pass antialising filter with a cut-off frequency at $\omega_{cut-off} = \frac{\pi}{3}$ the component at

 $\overline{\omega}_2 = \frac{5\pi}{12}$ will be removed (or, at least, attenuated by a non ideal filter).

Ex.3

```
close all
clearvars
clc
%% 1
% [3 pt] Define the sinusoidal signal x, which is composed of
% two contributions at f1 = 2 KHz and f2 = 1.25 KHz.
% The signal is sampled such that it repeats periodically every 40
% and it is defined over 400 samples.
% Plot the signal as a function of the time [seconds].
N = 400;
P_samples = 40;
f1 = 2e3;
f2 = 1.25e3;
% The overall period is the least common multiple of the two periods -->
% P1 = 1/2e3 --> 5e-4 seconds
% P2 = 1/1.25e3 --> 8e-4 seconds
% P = 40e-4 seconds = 4 ms
% Knowing P, we can find Fs = P_samples / P [secs] = 40/4e-3 = 1e4 = 10KHz
Fs = 10e3;
time axis = 0:1/Fs:(N-1)/Fs;
% define the signal
x = cos(2*pi*f1*time_axis) + cos(2*pi*f2*time_axis);
figure;
plot(time_axis, x);
grid;
```

```
title('x(t)');
응응 2
% [3 pt] We want to enhance the contribution at f1 and to lower down that
% To do so, we are given an LTI system H_1(z), causal and stable,
% with real coefficients and minimum phase, with this finite-difference
equation:
% y(n) = a*x(n) + b*x(n-1) + c*x(n-2) + d*y(n-1) + e*y(n-2).
% Choose the values of parameters a, b, c, d, e such that h_1(n=0) = 1.5.
% Filter the signal x(n) with H_1(z), defining the signal y(n).
f1 n = f1/Fs; % --> 1/5
f2_n = f2/Fs; % --> 1/8
% The filter structure is the following one:
% B = [a, b, c];
% A = [1, -d, -e];
% Since the filter has real coefficients, both numerator and denominator
% of the filter should present the following structure:
B(z) = gain * (1 - 2*rho_z*cos(theta_z)*z^{-1} + rho_z^2 * z^{-2}) -->
% numerator
A(z) = 1 - 2 \cdot p \cdot (theta_p) \cdot z \cdot \{-1\} + rho_p \cdot 2 \cdot z \cdot \{-2\}) -->
denominator
% for enhancing f1, we need to introduce a pole with theta_p = 2*pi*f1_n =
% 2*pi*1/5
% for lowering f2, we need to introduce a zero with theta_z = 2*pi*f2_n =
% 2*pi*1/8 = pi/4
% we can choose the remaining parameters as we want, but we need to keep
% h(n=0) = 1.5 and build a stable causal filter with minimum phase -->
% gain = 1.5 such to have a = 1.5
% poles and zeros inside the circle.
% Possible solution:
rho_z = 0.9;
theta_z = pi/4;
rho p = 0.9;
theta_p = 2*pi*1/5;
B_1 = 1.5*[1, -2*rho_z*cos(theta_z), rho_z^2];
A_1 = [1, -2*rho_p*cos(theta_p), rho_p^2];
% filter behaviour (not required)
[H, omega] = freqz(B_1, A_1, 2048, 'whole');
figure,
plot(omega./(2*pi), abs(H));
title('|DTFT| of the filter H_1(f)');
grid;
% filter the signal x
y = filter(B_1, A_1, x);
응응 3.
```

```
% [2.5 pt] The signal y(n) is summed to a periodic sequence = [1, 0, -1,
0, 1, 0, -1, 0, A\P].
% Define the output signal as z(n). Design the filter H_2(z),
% which is defined by the same finite-difference equation of H_1(z)
% but with different coefficients, to maintain only the signal y(n) from
% the signal z(n). Filter the signal z(n), defining the signal w(n).
% Notice that the sequence is a sinusoidal sequence with period = 4.
f3_n = 1/4;
z = y + \cos(2*pi*f3_n*(0:N-1));
% We have to design a notch filter in theta = 2*pi*f3_n = pi/2
rho_z = 1;
rho_p = 0.95;
theta = 2*pi*f3_n;
B_2 = [1, -2*rho_z*cos(theta), rho_z^2];
A_2 = [1, -2*rho_p*cos(theta), rho_p^2];
% filter behaviour (not required)
[H, omega] = freqz(B_2, A_2, 2048, 'whole');
figure,
plot(omega./(2*pi), abs(H));
title('DTFT of the notch filter H_2(f)');
grid;
% filter the signal z
w = filter(B_2, A_2, z);
응응 4.
% [2.5 pt] Compute the DFTs of the signals x(n), y(n), z(n), w(n) and
% plot their absolute values as a function of the normalized frequency
% Comment on the position/amplitude of the peaks you expect to see for
% every signal.
% Which are the differences between the DFTs of y(n) and z(n)?
% Which are the differences between the DFTs of y(n) and w(n)?
% Motivate your answers.
X = fft(x);
Y = fft(y);
Z = fft(z);
W = fft(w);
freq_axis = 0:1/N:1 - 1/N;
figure;
stem(freq_axis, abs(X));
title('Absolute value of the DFT of the original signal x(n)');
grid;
% we expect to see 4 peaks related to the two cosinusoidal signals, with
% the same amplitude. peaks are centered in 1/5, 1/8, 4/5 and 7/8.
figure;
stem(freq_axis, abs(Y));
title('Absolute value of the DFT of the signal y(n)');
% The gain of the peaks has been modified by the filter H_1(z), which
```

```
% enhances the frequency f1 and attenuates f2.
figure;
stem(freq_axis, abs(Z));
title('Absolute value of the DFT of the signal z(n)');
% The signal z contains other two peaks in the frequencies 0.25 and 0.75.
figure;
stem(freq_axis, abs(W));
title('Absolute value of the DFT of the signal w(n)');
grid;
% The signal w has a DFT which resembles that of y, because the filter
% The differences of the DFT of y and z are due to the peaks in 0.25 and
% 0.75, which are present in z and not in y. The rest is the same.
% Apart from small errors, there are no differences in the DFTs of y and
% because w is obtained by filtering z with a notch filter. The notch
% filter removes the frequency components at 0.25 and 0.75, leaving almost
% untouched the rest of the spectrum.
```