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A digital filter has the following difference equation:
y[n]:é(6ﬁy[n—1]—4y[n—2]+4x[n]—6\/5x[n—1]+9x[n—2])

[4 pts] What is the transfer function H (Z) of such a filter?

Draw its pole-zero plot. What kind of filter is it?
[4 pts] Draw its approximated amplitude and phase response in normalized frequencies.

[4 pts] A continuous signal X(t) = 5005(27[1000’[) + 7cos(27z4000t) is sampled at 8kHz and then

filtered with the previously defined filter. What will be output discrete signal y[n] ?

The continuous signal X(t)=6sin(wt)—6sin(w,t), where @, =27z -75kHz and @, =27-125kHz,
is sampled at 600kHz .

[2 pts] Analyze the signal in the frequency domain and depict the signal in the 0 — 2 pulsations range.
The signal is then downsampled without any lowpass filter of an order of M=3.
[3 pts] what will be the output signal? Describe the reason for such an output.

[3 pts] provide a suitable discrete filter to remove/attenuate any undesired effect ad depict the output
signal.

CONTINUES ON THE BACK



1)

2)

3)

4)

[3 pt] Define the sinusoidal signal x(t), which is composed of two contributions at f1 = 2 KHz and f2 = 1.25
KHz. The signal is sampled such that it repeats periodically every 40 samples, and it is defined over 400
samples. Plot the signal as a function of the time [seconds].
[3 pt] We want to enhance the contribution at f1 and to lower down that of f2. To do so, we are given an
LTI system H_1(z), causal and stable, with real coefficients and minimum phase, with this finite-difference
equation:

y(n) = a*x(n) + b*x(n-1) + c*x(n-2) + d*y(n-1) + e*y(n-2).
e Choose the values of parameters a, b, ¢, d, e such that h_1(n=0) = 1.5.
e  Filter the signal x(n) with H_1(z), defining the signal y(n).
[2.5 pt] The signal y(n) is summed to a periodic sequence =[1,0,-1,0, 1,0, -1, 0...]. Define the output signal
as z(n). Design the filter H_2(z), which is defined by the same finite-difference equation of H_1(z) but with
different coefficients, to maintain only the signal y(n) from the signal z(n). Filter the signal z(n), defining
the signal w(n).
[2.5 pt] Compute the DFTs of the signals x(n), y(n), z(n), w(n) and plot their absolute values as a function
of the normalized frequency axis. Comment on the position/amplitude of the peaks you expect to see for
every signal.
e  Which are the differences between the DFTs of y(n) and z(n)?
e  Which are the differences between the DFTs of y(n) and w(n)?
Motivate your answers.



Solutions

Ex.1

The filter has the following z transform associated to the difference equation:

H(2)- 4-67227" +927
9-63227" +4727

It is an all-pass filter, it is also a causal, stable and maximum phase filter.

Its zero-pole plot is the following:
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Since it is an all-pass filter its amplitude is constant across all frequencies. In this case the amplitude is
always 1.

The phase has the following behavior:



Phase Response
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By construction we can say that the couples of conjugate zeros and conjugate poles are at the

V4
normalized frequency — indicating that at that frequency we will have a phase rotation of 7 rads.

The sampled signal will have the following discrete representation:

x[n]zscos[%njmcos(ﬁn)

The first component at 1kHz will then undergo a phase rotation of 180° while the second component, at

the Nyquist frequency, will preserve its phase. The output will then be:

y[n]= —5cos(%nJ+7cos(7rn) :

The sampled signal will present impulses at the following normalized frequencies:

_  2775kHz 7« _  27l125kHz 57 .
@, =———=— and W, =————— =——, in the frequency domain it can be represented as:
600kHz 4 600kHz 12

X(w)=3j-6(0-a,)-3j-6(0-(27-®))-3]-6(0-@,)+3]-5(0—(27-@,))

With the simple downsampling | will obtain:



_ 3 = .- 5
o, =30, =Z7Z' and @, =30, :Zﬂ

So: Xd(w):§(3j-5(a)—51)—3j-5(a)—(27r—a=)1))—3j-§(a)—a=)2)+3j-§(a)—(27z—

)

2

But 27 — @, =277—er=277=a)2 and 27 -, =27Z'—Z7Z'=Z7Z'=a)l so, due to the downsampling

without antialising filter, the two sinusoids, due to the opposite sign, will cancel each other out.

. T . T
Introducing a low pass antialising filter with a cut-off frequency at @, 4 = 3 the component at

b4
w, =—— will be removed (or, at least, attenuated by a non ideal filter).

Ex.3

close all
clearvars
clc

%% 1

% [3 pt] Define the sinusoidal signal x, which is composed of

% two contributions at f1 = 2 KHz and 2 = 1.25 KHz.

% The signal is sampled such that it repeats periodically every 40
samples,

% and it is defined over 400 samples.

% Plot the signal as a function of the time [seconds].

N = 400;
P_samples = 40;
fl = 2e3;

2 = 1.25e3;

% The overall period is the least common multiple of the two periods -->

% P1 1/2e3 --> 5e-4 seconds

% P2 1/1.25e3 --> 8e-4 seconds

% P = 40e-4 seconds = 4 ms

% Knowing P, we can find Fs = P_samples / P [secs] = 40/4e-3 = le4 = 10KHz

Fs = 10e3;
time_axis = 0:1/Fs:(N-1)/Fs;

% define the signal
X = cos(2*pi*fl*time_axis) + cos(2*pi*f2*time_axis);

figure;
plot(time_axis, X);
grid;



title("x(t)");

%% 2

% [3 pt] We want to enhance the contribution at f1 and to lower down that
of f2.

%
%

To do so, we are given an LTI system H _1(z), causal and stable,
with real coefficients and minimum phase, with this finite-difference

equation:

%
%
%

fl n
2 n

%
%
%

%
%
%
%
%

y(n) = a*x(n) + b*x(n-1) + c*x(n-2) + d*y(n-1) + e*y(n-2).

Choose the values of parameters a, b, c, d, e such that h_1(n=0) = 1.5.

Filter the signal x(n) with H_1(z), defining the signal y(n).

fl/Fs; % --> 1/5
f2/Fs; % --> 1/8

The filter structure is the following one:
B = [a, b, c];
A [11 _d1 _e];

Since the filter has real coefficients, both numerator and denominator
of the fTilter should present the following structure:

B(z) = gain * (1 - 2*rho_z*cos(theta _z)*z"{-1} + rho_z"2 * z~{-2}) -->
numerator

A(z) = 1 - 2*rho_p*cos(theta p)*z™{-1} + rho p™2 * z™{-2}) --—>

denominator

%
%
%
%

%
%
%
%

%

for enhancing fl, we need to introduce a pole with theta p = 2*pi*fl_n
2*pi*1/5

for lowering 2, we need to introduce a zero with theta z = 2*pi*f2_n
2*p1*1/8 = pi/4

we can choose the remaining parameters as we want, but we need to keep
h(n=0) = 1.5 and build a stable causal filter with minimum phase -->
gain = 1.5 such to have a = 1.5

poles and zeros inside the circle.

Possible solution:

rho_z = 0.9;

theta z =
rho_ p = 0.9;
theta p =

pi/4;

2*pi*1/5;

B 1 =1.5*[1, -2*rho_z*cos(theta_z), rho_z"2];

A_

%

1 =[1, -2*rho_p*cos(theta_p), rho_p”"2];

filter behaviour (not required)

[H, omega] = freqz(B_1, A 1, 2048, “whole");
figure,

plot(omega./(2*pi), abs(H));

title("|DTFT|] of the Filter H_1(F)");

grid;

%
y

filter the signal x
= filter(B_ 1, A 1, X);

%% 3.



% [2.5 pt] The signal y(n) is summed to a periodic sequence = [1, 0, -1,
0, 1, 0, -1, 0,AT].

o Define the output signal as z(n). Design the filter H_2(z2),

% which is defined by the same finite-difference equation of H_1(z)

% but with different coefficients, to maintain only the signal y(n) from
% the signal z(n). Filter the signal z(n), defining the signal w(n).

=SS

X

=SS

% Notice that the sequence is a sinusoidal sequence with period = 4.
f3 . n = 1/4;
z =y + cos(2*pi*f3_n*(0:N-1));

% We have to design a notch filter in theta = 2*pi*f3_n = pi/2

rho z = 1;
rho_p = 0.95;
theta = 2*pi*f3_n;

B 2 = [1, -2*rho_z*cos(theta), rho_z"2];
A 2 = [1, -2*rho_p*cos(theta), rho_p”2];

% Filter behaviour (not required)

[H, omega] = freqz(B_2, A 2, 2048, “whole");
figure,

plot(omega./(2*pi), abs(H));

title("|DTFT] of the notch filter H_2(F)");
grid;

% Filter the signal z
w = Filter(B_ 2, A 2, 2);

%% 4.

% [2.5 pt] Compute the DFTs of the signals x(n), y(n), z(n), w(n) and
% plot their absolute values as a function of the normalized frequency
axis.

% Comment on the position/amplitude of the peaks you expect to see for
% every signal.

% Which are the differences between the DFTs of y(n) and z(n)~?

% Which are the differences between the DFTs of y(n) and w(n)?

% Motivate your answers.

re(x);
re(y);
e(2):
fre(w);

=N <X

freq_axis = 0:1/N:1 - 1/N;

figure;

stem(freg_axis, abs(X));

title("Absolute value of the DFT of the original signal x(n)");

grid;

% we expect to see 4 peaks related to the two cosinusoidal signals, with
% the same amplitude. peaks are centered in 1/5, 1/8, 4/5 and 7/8.

figure;

stem(freq_axis, abs(Y));

title("Absolute value of the DFT of the signal y(n)*);

grid;

% The gain of the peaks has been modified by the filter H_1(z), which



% enhances the frequency fl and attenuates T2.

figure;

stem(freg_axis, abs(2));

title("Absolute value of the DFT of the signal z(n)");

grid;

% The signal z contains other two peaks in the frequencies 0.25 and 0.75.

figure;

stem(freg_axis, abs(W));

title("Absolute value of the DFT of the signal w(n)*);

grid;

% The signal w has a DFT which resembles that of y, because the Tilter
% H 2(z) is a notch filter and removes the frequency component at 0.25.

% The differences of the DFT of y and z are due to the peaks in 0.25 and
% 0.75, which are present in z and not in y. The rest is the same.

% Apart from small errors, there are no differences in the DFTs of y and
W1

% because w is obtained by filtering z with a notch Ffilter. The notch

% filter removes the frequency components at 0.25 and 0.75, leaving almost
% untouched the rest of the spectrum.



