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A FIR filter with 3 zeros has the following pole-zero plot

Pole-Zero Plot

1.5 F7
1k | The two conjugate zeros are placed
< p=2 . 3 .
§ 05f 1 with an angle of +— 7 with respect
= 3 !
£ ) to the positive real axis direction.
©
g -0.5 ‘):2
At
-1.5 b
3 2 1 0 1 2
Real Part

[3 pts] Define the z-transform H, (z) and the impulse response 7, [n]

[3 pts] Define a minimum phase FIR filter A, [n]with the same amplitude response.

[4 pts] Asignal x(¢)=2-cos(27500¢)+3-cos(271000¢) is sampled at 2kHz obtaining the
signal x[n] that is then filtered with the filter 4, (n) . Calculate just the amplitude of the

different frequencies of the output signal y(n) .

[2 pts] What would be the differences between the signal x[n] filtered with the filter A, [n]

and x[n] filtered with the filter £, [n] ?

A signal x[n] = {2, 1,-2,3,0,1,0,-2, 1,—2} is filtered with a filter H(z) =1-z"

e [2 pts] Evaluate the output y[n] in the time domain.

e [3 pts] Evaluate the output y[n] using the Overlap and Add approach on blocks of 4 samples
describing all the processing steps.

e [3 pts] Evaluate the output y[n] using the Overlap and Save approach on blocks of 4 samples
describing all the processing steps.

e [3 pts] Just describe (without calculations) how the output y[n] can be obtained using the

Overlap and Save approach on blocks of 4 samples working in the frequency domain.

CONTINUES ON THE BACK



1)

3)

4)

[3 pt] The signal x(n) contains two sinusoidal contributions (with the same amplitude = 1) at the

normalized frequencies 0.1 and 0.25. The period of x(n) is 1.25 [ms] and the duration is 62.5 [ms]. Define

the signal x(n).

[3 pt] Define the filter H(z) as H(z) = (0.81 + z72)-(1 - 1.6cos(rt/5)z~ 1+ 0.64z72) / (1 + 0.81z72).

e  Filter the signal x(n) with H(z), defining y(n).

e  Which is the value of y(n = 0)? Define it in MATLAB, but specify also the numerical value that you
expect.

[3.5 pt] Compute the all-pass minimum-phase decomposition of the filter H(z), defining H_ap(z) and

H_min(z) as the two components. (Hint: no computations are needed!)

o  Filter the signal x(n) with H_ap(z) and H_min(z), defining y_ap(n) and y_min(z).

e Define the signal w(n) =0.5 - x(n) + 0.5 - y_ap(n).

e  Find the filter H_w(z) such that W(z) = H_w(z) - X(z2).

[2.5 pt] Compute the DFTs of the signals x(n), y(n), y_min(n), y_ap(n), w(n) and plot their absolute values

as a function of the normalized frequency axis, starting from frequency -0.5. Comment on the

position/amplitude of the peaks you expect to see for every signal.



Solutions

Ex.1
H1(Z):(1+Z_l)'<1+2\/52_1 -|r4Z_2)=1+(2\/§+1)z_l +(2\/§+4)2_2 +4z7

B[] ={1.2v2 +1,242 + 4.4]
V2 o1,
e

Hz(z):A(1+zl)-(l+72
In order to obtain the same amplitude response for /, and H, we can set H, (Z = l) =H, (z = 1), i.e.
10+4\/§:A(§+\/5j—>/1:4

hy[n]={4,4+242,1+ 22,1}

The sampled signal will be:

x[n]:[ N

NN
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According to the filter /4, amplitude response:

Magnitude Response
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Normalized Frequency (x = rad/sample)

The component at the Nyquist frequency will be completely removed while the component at the % will

be amplified by a factor of: ‘Hz (Z:j)‘:‘4+(4+2\/§)(—j)+(1+2\/§)(—1)+j‘:\/ﬁ=5.83



Filtering x[n] with 7, [n] or with A, [n] will give two outputs with the same amplitude but with a
different phase.

Ex.2

The filter is an high-pass filter and the output, obtained using the convolution is
y[n] = {2,—1,—3,5,—3,1,—1,—2,3,—3,2}
The Overlap and Add approach, working on blocks of 4 samples, gives the following processing steps:

b [n] = {2,1,—2, 3} * {1,—1} = {2,-1,-3,5,-3} where the last sample in red is removed and stored to be
added to the next output block:

¥, [n] = {0, 1,0, —2} * {l,—l} with remainder = {0 ,1,-1,-2, 2} where the “-3” is the remainder from
the previous convolution while “2” is stored as the remainder for the next output block.

For the last input block, since the length is shorter than 4 elements, we need to zero-pad the signal and
then, | have to apply again the same procedure.

For the Overlap and Save, since the length of the filter is 2, | have to add 2-1=1 zeros in front of my
signal (just to the first block) to account for the circular convolution:

Y [n] = {O, 2,1,—2} ® {1,—1} = {2, 2,—1,—3} : the first output sample (the underlined one) must be

removed since it is due to the spurious effect of circular convolution.
¥, [n] = {—2,3,0,1} ® {1,—1} = {—;, 5, —3,1} again, the first output sample must be removed.

Etc.

Working in the frequency domain implies that we will use the DFT with 4 samples and the filter has to be
zero-padded to 4 elements: h(n) = [1 -1 0 0].

Then, e.g., yl(n):{fl{%'{x(n)}g{h(n)}} where § and ' are the Discrete Fourier Transform

and the Inverse Discrete Fourier Transform respectively.

Ex.3 (MATLAB CODE)

close all
clearvars
clc

%% 1. [3 pt]

o°

The signal x(n) contains two sinusoidal contributions (with the same
amplitude = 1) at the normalized frequencies 0.1 and 0.25.
% The period of x(n) is 1.25 [ms] and the duration is 62.5 [ms].

o°



[o)

% Define the signal x(n).

f0 = 1/10;

f1 = 1/4;

P seconds = 1.25e-3;
duration = 62.5e-3;

% We need to find the sampling rate to define the time-axis.
% To find Fs, we know that P samples and P _seconds are related one
with the

% other by P samples = Fs * P seconds.

% First, find P_samples, then compute Fs = P_samples/P seconds.
P samples = 20; % lcm(10, 4) = lcm(1/£f0, 1/f1)

Fs = P_samples/P seconds;

time = 0:1/Fs:duration - 1/Fs;
X = cos (2*pi*f0*Fs*time) + cos (2*pi*fl*Fs*time);

%% 2. [3 pt]

o°

Define the filter H(z) as H(z) = (0.81 + z~(-2)) (1 -

.6cos (pi/5)z" (-1)+

0.64z~(-2)) / (1 + 0.81z"(-2)).

Filter the signal x(n) with H(z), defining y(n).

% Which is the value of y(n = 0)? Define it in Matlab, but specify
also

the numerical value that you expect.

o°

o°

o°

% To define the filter, we can exploit the convolution property
B = conv([0.81, O, 1], [1, -l.6*cos(pi/5), 0.641]);

A= 1[1, 0, 0.81];

% % to better analyze the filter (not required)

o°

figure;

zplane (B, A);

title('Z-plane of filter H(z)');

grid;

[H, omega] = freqgz (B, A, 1024, 'whole');
figure,

plot (omega./ (2*pi), abs (H));
title (' |DTFT| of the filter H(z)'");
grid;

xlabel ('f [norm]"');

oC o o o° o o° o o°

o

o°

filter the signal
y = filter(B, A, Xx);

y 0 = x(1)*B(1);

% we expect that y 0 = x(n=0) * h(n=0)

% x(n=0) = 2, as we have the sum of two cosinusoidal signals being 1
in

=0.

o°
3



o°

h(n=0) is only due to the numerator coefficient in n = 0, therefore
t

will be 0.81.

y 0=2*0.81 =1.62

o° -

o°

o

$ 3. [3.5 pt]

o°

Compute the all-pass minimum-phase decomposition of the filter H(z),
defining H ap(z) and H min(z) as the two components.
(Hint: no computations are needed!)
Filter the signal x(n) with H ap(z) and H min(z), defining y ap(n)
and y min(z) .

Define the signal w(n) = 0.5 x(n) +
Find the filter H w(z) such that W(

o° oP

o°

o°

0.5 y ap(n)
) = H w(z)X(z).

o°

Z

o°

The filter is already decomposed in an all-pass component and a
minimum-phase component.

o°

% The all-pass component H ap(z) = (0.81 + z~(-2))/ (1 + 0.81z"(-2)).
% The minimum-phase component H min(z) = (1 - l1.6cos (pi/5)z" (-1)+
$ 0.64z"(=-2)).

o°

Even if you want to follow the standard methodology, you will find
that,

(o)

% after all the steps, you end up with these two exact components.

B ap = [0.81, 0, 11;

A_ap = [1, OI 0.811;

B min = [1, -1.6*cos(pi/5), 0.64];
A min = 1;

% % to better analyze the filters (not required)
% figure;

% zplane (B ap, A ap);

% title('Z-plane of filter H {ap} (z)');

% grid;
% [H, omega] = freqz(B ap, A ap, 1024, 'whole');

% figure,

% plot (omega./ (2*pi), abs (H)):;

% title('|DTFT| of the filter H {ap}(z)');
% grid;

% xlabel ('f [norm]'");

% figure;
% zplane (B min, A min);
% title('Z-plane of filter H {min} (z)');

% grid;
% [H, omega] = freqgz (B min, A min, 1024, 'whole');

% figure,

% plot (omega./ (2*pi), abs (H)):;

% title('|DTFT| of the filter H {min} (z)");
% grid;

% xlabel ('f [norm]');

% Filter the signal x
y ap = filter (B _ap, A ap, X);



y min = filter (B min, A min, Xx);

% Define the signal w

w = 0.5*x + 0.5*y ap;

% Find the filter H w such that W(z) -
2

= X(z) * H w(z)
= X(z

$ W(z) = (X(z) + X(z)*H ap(z)) / ) (H ap(z) + 1)/2
% —--> H(z) = (H ap(z) + 1)/2.

% By making easy hand-written computations, we find the numerator and
% denominator coefficients.

Bw=1.81/2*[1, 0, 1];

A w-=[1, 0, 0.81];

% —=> This is a notch filter in fl. We can understand it by looking at
the

% position of the zeros and poles: they have the same phase, but the
zeros
are on the unit circle.

o©°

Q

% to better analyze the filter (not required)
figure;

zplane (B w, A w);

title('Z-plane of filter H w(z)"');

grid;

[H, omega] = freqgz(B w, A w, 1024, 'whole');
figure,

plot (omega./ (2*pi), abs (H)):;

title('|DTFT| of the filter H {w}(z)');
grid;

xlabel ('f [norm]"'");

o0 o° A° o A° o A° o° o° o°

o°

o

% 4. [2.5pt]

o

Compute the DFTs of the signals x(n), y(n), y min(n), y ap(n), w(n)
and plot their absolute values as a function of the normalized
frequency

axis, starting from frequency -0.5.

Comment on the position/amplitude of the peaks you expect to see
for every signal.

o°

o° o°

o°

X = fft(x);

Y = £ft(y);

Y min = fft(y min);
Y ap = fft(y_ap);
W = fft(w);

N = length(y);
freq axis = (0:1/N:1 - 1/N) - 0.5;

figure;

stem(freq axis, abs(fftshift(X)));

title('Absolute value of the DFT of the signal x(n)');
grid;

xlabel ('f [norm]");

% We find four peaks in -f0, -fl1, f0, f1. They have the same
amplitude.



figure;

stem(freq axis, abs(fftshift(Y)));

title ('Absolute value of the DFT of the signal y(n)');

grid;

xlabel ('f [norm]");

We find four peaks in -f0, -f1, f0, f1.

The peaks in frequency f0 and -f0 are slightly attenuated
with respect to those of x(n),

because the filter has zeros in f0 with absolute value = 0.8
The peaks in frequency fl and -fl are not attenuated by the filter.
Their amplitude differs from that of x(n) because the filter
introduces

o° o o o° o°

o°

% a gain in f = fl which is = abs(l -1.6*cos(pi/5)*1i-0.64) = 1.34
figure;

stem(freq axis, abs(fftshift (Y min)));

title('Absolute value of the DFT of the signal y {min} (n)');

grid;

xlabel ('f [norm]");

% We find basically no differences with respect to y(n). H(z) and

H min(z)

differ only for the all-pass component, which has no effect on the
amplitude.

o°

o°

figure;

stem(freq axis, abs(fftshift(Y ap)));

title('Absolute value of the DFT of the signal y {ap}(n)');
grid;

xlabel ('f [norm]");

% The peaks are basically the same as x(n), because the filter is an
all-pass

figure;
stem(freq axis, abs(fftshift(W)));
title('Absolute value of the DFT of the signal w(n)"');

grid;

xlabel ('f [norm]"'");

% The filter is a notch in f = fl. Therefore, we find only the
contribution

(¢}

% at f0 and -f0, with an amplitude which is similar to that of x(n).



