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Text:	
1. [3 pt] You are given the following plot of a real DFT as a function of frequency samples: 

 
• Define the discrete-time signal x related to this DFT. (hint: the amplitude of each signal component is equal 

to 1, and the DFT has been computed using the total amount of signal samples (800), without zero-padding). 
• The period of x is 0.1 seconds. Find the sampling rate used to sample the signal. 

2. [2.5 pt] Downsample the signal x with a factor M = 4, obtaining x_downsampled. 
• Which is the period of x_downsampled (in number of samples)? 
• Plot the absolute value of DFTs of x and of x_downsampled in the same figure (using the function stem), as a 

function of the normalized frequency axis starting from 0. In particular, for each signal, compute its DFT on a 
number of samples exactly equal to its period.  

• Comment on the position of all the peaks in both the two signals. Is there any frequency alias introduced by 
the downsampling process? If yes/no, where and why? 

3. [3 pt] You have to project a low pass filter in order to filter out (if present) the frequency alias introduced by the 
downsampling process. You have two options: (1) generating a low-pass filter using the windowing method; (2) 
generating a low-pass filter using poles-zeroes. 

•  Which is the maximum possible cutoff frequency to select in order to avoid aliasing?  
• Define the low-pass filter h_w using the windowing method having the maximum possible cutoff frequency, 

with order 64. 
• From the following zeros-poles diagram, select only the zeroes and poles such that you end up with a stable 

low-pass filter, minimum phase, with real coefficients, defined as h_zp. In particular, a = -0.95; b = -0.9; c, n 
= 0.99*exp(+-2*pi*j*0.275); d = 0.75*exp(2*pi*j*0.275); e = 0.99j; f, l = 0.95*exp(+-2*pi*j*0.125); g, m = 
1.05*exp(+-2*pi*j*0.125); i = 0.8; h, k = 1.2* exp(+-2*pi*j*0.0625); o = 0.95. 



 

• Find the numerator and denominator of the selected filter H_zp such that the filter gain in frequency = 0 is 
equal to 1. 

4. [3.5] Filter the signal x with h_w and h_zp, defining x_w and x_zp. 
• Plot the 3 signals (x, x_w, x_zp) in the same figure.  
• Looking at the temporal behaviour of the signals, which is, among x_w and x_zp, the signal with the most 

accentuated low-pass behaviour? 
• Investigating the three signals also in the frequency domain, which is, in your opinion, the best filter of the 

two? Motivate your answer. 
• Select this filter and decimate the original signal x.  
• Compute the DFT of the decimated signal and check if frequency alias is maintained or deleted (compare 

the DFTs of the decimated and of the downsampled signals). 

	
 

 

 

 

 

 

 

	
 



	

Solution:	
close all 
clearvars 
clc 
  
%% 1. 
  
% [3 pt] You are given the following real DFT as a function of frequency 
samples: 
% (see the exam text). 
% Define the time-discrete signal x related to this DFT.  
% (hint: the amplitude of each portion of the signal is equal to 1,  
% and the DFT has been computed using the total amount of signal samples,  
% without zero-padding). 
% The period of x is 0.1 seconds. Find the sampling rate used to sample 
the signal. 
  
N = 800; 
% the signal is composed by 4 cosinusoids, as the DFT is real and we find 
8 
% peaks (4 peaks before N/2, and other 4 peaks mirrored after N/2). 
% the normalized frequencies correspond to the peak positions divided by N 
= 800. 
f_vec = [4; 50; 160; 200]./N; 
f0 = f_vec(1); 
f1 = f_vec(2); 
f2 = f_vec(3); 
f3 = f_vec(4); 
  
% define the signal x: 
n = 0:N-1; 
x = sum(cos(2*pi*f_vec.*n), 1); 
% otherwise: 
%x = cos(2*pi*f0*n) + cos(2*pi*f1*n) + cos(2*pi*f2*n) + cos(2*pi*f3*n); 
  
% The period of x is 0.1 seconds. Find the sampling rate used to sample 
the signal. 
  
% periods of the sinusoids: 
P0 = 1/f0; % --> 200 
P1 = 1/f1; % --> 16 
P2 = 1/f2; % --> 5 
P3 = 1/f3; % --> 4 
% lcm between (200, 16, 5, 4) --> 400. 
  
px_samples = 400; 
px_sec = 0.1; 



Fs = px_samples/px_sec; 
  
%% 2.  
  
% [2.5 pt] Downsample the signal x with a factor M = 4, obtaining 
% x_downsampled. 
% Which is the period of x_downsampled (in number of samples)? 
% Plot the DFT of x and of x_downsampled in the same figure (using the 
function stem),  
% as a function of the normalized frequency axis starting from 0. 
% In particular, compute for each signal its DFT on a number of samples 
% exactly equal to its period.  
% Comment on the position of all the peaks in both the two signals. 
% Is there any frequency alias introduced by the downsampling process? If 
% yes/no, where and why? 
  
% downsample the signal 
M = 4; 
x_downsampled = x(1:M:end); 
  
% the period is equal to the period of x divided by M. 
p_downsampled = px_samples/M; 
  
%compute for each signal its DFT on a number of samples 
% exactly equal to its period.  
  
norm_freq_axis_x = 0:1/px_samples:1 - 1/px_samples; 
X = fft(x, px_samples); 
  
norm_freq_axis_x_downsampled = 0:1/p_downsampled:1 - 1/p_downsampled; 
X_downsampled = fft(x_downsampled, p_downsampled); 
  
figure(1);  
leg = {}; 
% original signal 
stem(norm_freq_axis_x, abs(X)); 
leg{1} = 'DFT of the Original signal'; 
grid; 
hold on;  
% downsampled signal  
stem(norm_freq_axis_x_downsampled, abs(X_downsampled)); 
leg{2} = 'DFT of the Downsampled signal'; 
legend(leg); 
  
% Comment on the position of all the peaks in both the two signals. 
% Is there any frequency alias introduced by the downsampling process? If 
% yes/no, where and why? 
% in the original signal, we have peaks in f0, f1, f2, f3, 1-f0, 1-f1, 
% 1-f2, 1-f3. 



% in the downsampled signal, we have frequency alias, because the signal 
% frequency content is not limited to 1/(2*M), which is the cut-off 
% frequency to be used to avoid alias. 
% in X_downsampled, we find peaks shifted in 4 times the original peak 
% positions. f0=0.005 will be shifted in 0.02, 1-0.02 (no alias); 
f1=0.0625 will be 
% shifted in 0.25, 1-0.25 (no alias); f2=0.2 will be shifted in 0.8, 1-
0.8=0.2, 
% causing aliasing; f3=0.25 will be shifted in 1, 1-1 = 0, causing 
% aliasing. 
  
%% 3.  
  
% [3 pt] You have to project a low pass filter in order to filter out (if 
present) 
% the frequency alias introduced by the downsampling process. 
% you have two options: 
% (i): generating a low-pass filter using the windowing method. 
% (ii): generating a low-pass filter using poles-zeroes. 
% Which is the maximum cutoff frequency to select in order to avoid 
aliasing?  
% Define the low-pass filter h_w using the windowing method having the 
maximum 
% possible frequency, with order 64. 
% From the following zeros-poles diagram, select only the zeroes and poles 
% such that you end up with a stable low-pass filter, minimum phase, with 
% real coefficients, defined as h_zp. (see exam text). 
% Find the numerator and denominator of the selected filter H_zp such that 
% the filter gain in frequency = 0 is equal to 1. 
  
% the maximum cutoff frequency is given by 1/(2M) = 0.125. 
f_cutoff = 1/(2*M); 
  
% low-pass filter with the windowing method: 
cutoff_filter = 2*f_cutoff; 
h_w = fir1(64, cutoff_filter); 
  
% Select only the zeroes and poles such that you end up with a  
% stable low-pass filter, minimum phase, with real coefficients. 
% stable --> all poles must be inside the unit circle. 
% low-pass --> in frequency = 0, we do not want zeroes, but only poles. In 
% frequency = 0.5, we do not want poles, but only zeroes. 
% minimum phase --> all zeroes must be inside the unit circle. 
% real coefficients --> discard complex zeroes which do not occur in 
% complex conjugate pairs. 
  
zeroes = [0.95*exp(2*pi*1i*0.125); 0.95*exp(-2*pi*1i*0.125); -0.95; ... 
    0.99*exp(2*pi*1i*0.275);0.99*exp(-2*pi*1i*0.275)]; 
poles = [0.95]; 



  
A_zp = poly(poles); 
B_zp = poly(zeroes); 
  
% Find the numerator and denominator of the selected filter H_zp such that 
% the filter gain in frequency = 0 is equal to 1. 
% In order to have gain = 1 in f = 0, we should impose that: 
% k*B_zp(z=1)/A_zp(z=1) = 1 --> k = sum(A_zp)/sum(B_zp). 
k = sum(A_zp) / sum(B_zp); 
% multiply the numerator by k 
B_zp = k * B_zp; 
  
%% 4.  
  
% [3.5 pt] Filter the signal x with h_w and h_zp, defining x_w and x_zp. 
% Plot the 3 signals (x, x_w, x_zp) in the same figure. 
% Looking at the temporal behaviour of the signals, which is, among x_w 
and 
% x_zp, the signal with the most accentuated low-pass behaviour? 
% Investigating the three signals also in the frequency domain, which is, 
in your opinion, the 
% best filter of the two? Motivate your answer. 
% Select this filter and decimate the original signal x. 
% Compute the DFT of the decimated signal and check if frequency alias is 
% maintained or deleted. 
% (compare the DFTs of the decimated and of the downsampled signals). 
  
% Filter the signal x with h_w and h_zp, defining x_w and x_zp. 
  
x_w = filter(h_w, 1, x); 
x_zp = filter(B_zp, A_zp, x); 
  
% Plot the 3 signals (x, x_w, x_zp) in the same figure. 
% Looking at the temporal behaviour of the signals, which is, among x_w 
and 
% x_zp, the signal with the most accentuated low-pass behaviour? 
  
leg = {}; 
figure; 
plot(x); 
leg{1} = 'Original signal'; 
hold on; 
grid; 
plot(x_w); 
leg{2} = 'Signal filtered with h_w'; 
plot(x_zp); 
leg{3} = 'Signal filtered with h_{zp}'; 
legend(leg); 
  



% The signal with the most low-pass behaviour is that filtered with h_zp. 
  
% Investigating also the frequency domain, which is, in your opinion, the 
% best filter of the two? 
% Compute the signals dft 
X = fft(x); 
X_w = fft(x_w); 
X_zp = fft(x_zp); 
  
norm_freq_axis = 0: 1/N:1 - 1/N; 
figure; 
leg = {}; 
% original signal 
stem(norm_freq_axis, abs(X)); 
leg{1} = 'DFT of the Original signal'; 
hold on; 
% fir signal 
stem(norm_freq_axis, abs(X_w)); 
leg{2} = 'DFT of the Original signal filtered with h_w'; 
% iir signal 
stem(norm_freq_axis, abs(X_zp)); 
leg{3} = 'DFT of the Original signal filtered with h_{zp}'; 
  
% One good option could be to choose h_w. It filters out the frequency 
% components after 1/(2M), at the same time not attenuating too much 
signal 
% content at lower frequencies. 
  
% Select this filter and decimate the original signal x. 
x_dec = x_w(1:M:end); 
  
% Compute the DFT of the decimated signal and check if frequency alias is 
% maintained or deleted with respect to the downsampling scenario. 
% (compare the DFTs of the decimated and of the downsampled signals). 
  
X_dec = fft(x_dec); 
X_downsampled = fft(x_downsampled); 
figure; 
leg = {}; 
plot(0:1/length(x_dec):1-1/length(x_dec), abs(X_dec)); 
leg{1} = 'DFT of the Decimated signal'; 
hold on; 
plot(0:1/length(x_downsampled):1-1/length(x_downsampled), 
abs(X_downsampled), '--'); 
leg{2} = 'DFT of the Downsampled signal'; 
legend(leg); 
  
% The frequency alias is no more present. 
  


