
MultimediaSignal Processing 1st Module and 
Fundamentals of Multimedia Signal Processing 

Ex.1 (Pt.12) 
A signal ( )x t  is sampled at 8kHz. We want to upsample it to 10 kHz.  

1. [3 pts.] Describe and representthe processing chain in order to get the proper upsampled 
signal. [Provide numerical values of the parameters at every step] 

The initial sequence [ ] { }1,2,1,2x n = − is sampled at 8kHz and we have a FIR low pass filter 

[ ] { }1, 2,2, 2,1h n = . 

2. [9 pts.] Provide the output, [ ]'x n , i.e. the final upsampled signal at the end of the whole 

process. 

Ex.2 (Pt.12) 
From the following signal [ ] { }3, 2, 2,5,1,1x n = − − , that was sampled at 12kHz, we need to remove 

completely the spurious components at 2kHz and at 4kHz, preserving the other ones. 

1. [3pts.] Working only in the Frequency domain, provide the W matrix in order to get the DFT of 
the signal. 

2. [5pts.] Find the DFT of the signal, define and apply the proper filter to remove justthe spurious 
components preserving the other ones. 

3. [4 pts.] Find the final output signal [ ]y n in the time domain. 

Ex.3 (Pt. 11 – MATLAB code) 
Suppose you have to create the MATLAB script ‘exam.m’. 

1. [1 pt] Which are the lines of code the script should begin with in order to close the opened 
figures, clear the workspace and clear the command window? 

2. [6 pt] You are given a LTI system characterized by the following finite-difference equation: 
y(n) = 2x(n) – 2√2x(n-1) + 2x(n-2) + √2/2y(n-1) – 0.25y(n-2)  

 . Write the transfer function of the filter in Z-domain, as H(z) = B(z) / A(z) 
a. Define B(z) and A(z) as arrays in MATLAB 
b. Evaluate the value of the filter h(n) in n = 0 without converting the filter to time domain 
c. Evaluate the poles and the zeros  
d. Plot zeros and poles in the Z plane 
e. Write a MATLAB function ‘is_stable.m’ which receives as input B(z) and A(z) of a 

generic filter and returns: 
i. 1 if the system is stable 

ii. -1 if the system is unstable 
f. Test the function ‘is_stable.m’ on the filter H(z) defined above, assigning to the variable 

‘stability’ the output of the function. 
3. [4 + 1 extra pt] Given the sinusoidal signal x, sampled at Fs = 1.6KHz, with amplitude 1.5, 

frequency 200 Hz, duration 1.3 seconds 
 . Filter the signal x with the filter H(z) defined above. 
a. Plot the magnitude of the DFT of the filtered signal as a function of normalized 

frequencies defined between [0, 1). 
b. [1 extra pt] What do you expect to see in the DFT of the initial signal x and in DFT of the 

filtered signal?  
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The upsampled signal will be: 

[ ] { }1 1,0,0,0,0,2,0,0,0,0,1,0,0,0,0,2,0,0,0,0
5ux n = − . 

Applying the low pass filter we will get: 

[ ] { }1 1, 2, 2, 2, 1,2,2 2,4,2 2,2,1, 2,2, 2,1,2,2 2,4,2 2,2
5LPx n = − − − − −  

Applying the downsampling we will get: 

[ ] { }4' 1, 1,2 2,2,2 2
5

x n = − −
 

The coefficient 4/5 is due to preserve the signal power at the different sample rate.
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The “…” represents a value that does not need to be computed since the filter will set that value to 
zero. The filter will just preserve the continuous and the Nyquist component at 6kHz. 
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Ex.3 
%% 1. 
 
closeall 
clearvars 
clc 
 
%% 2. 
% Define B(z) and A(z) as arrays in MATLAB 
 
B = [2, -2*sqrt(2), 2]; 
A = [1, -sqrt(2)/2, 0.25]; 
 
% Evaluate the value of the filter h(n) in n = 0  
% without converting the filter to time domain 
 
h_0 = B(1) / A(1); 
 
% poles and zeros  
 
zeroes = roots(B); 
poles = roots(A); 
 
% zeros and poles in the Z plane 
 
figure; 
zplane(B, A); 
 
% MATLAB function ‘is_stable.m’ receives  
% as input B(z) and A(z) of a generic filter and returns: 
%i.    1 if the system is stable 
% ii.   -1 if the system is unstable 
% NB: functions should be defined in different files or at the end of 
the 
% script --> check the end of this script 
 
% Test the function ‘is_stable.m’ on the filter H(z) defined above 
 
stability = is_stable(B, A); 
 
%% 3.  
 
% Given the sinusoidal signal x, sampled at Fs = 1.6KHz,  
% with amplitude 1.5, frequency 200 Hz, duration 1.3 seconds 
 
ampl = 1.5; 



f0 = 200; 
Fs = 1.6e3; 
duration = 1.3; 
time = 0:1/Fs:duration; 
 
x = ampl * cos(2*pi*f0*time); 
 
% Filter the signal x with the filter H(z) defined above 
 
y = filter(B, A, x); 
 
 
% Plot the magnitude of the DFT of the filtered signal 
% as a function of normalized frequencies between [0, 1). 
 
Yf = fft(y); 
N_samples_fft = length(y); 
norm_freq_axis = 0: 1/N_samples_fft:(N_samples_fft- 1)/ N_samples_fft; 
 
figure; 
plot(norm_freq_axis, abs(Yf)); 
 
% What do you expect to see in the DFT of the initial  
% signal x and in DFT of the filtered signal? 
 
% the input signal x is a cosine --> we expect to see 2 peaks in  
% normalized frequency = 200Hz/1600Hz --> one peak in 1/8 = 0.125  
% and the other peak in 1 - 1/8 = 0.875 
% the output signal y is the filtered version of x.  
% the filter H(z) is a notch filter and has zeros at omega = pi/4, 
which 
% corresponds to normalized frequency = 1/8... therefore, the sinusoid 
is 
% canceled by the filter. We expect an almost flat spectrum 
 
%% function code 
 
function [stability] = is_stable(B, A) 
 
% compute the poles of the filter 
% NB: zeros are not associated with stability 
poles = roots(A); 
 
% check whether any pole is outside the unit circle 
if any(abs(poles) > 1) 
stability = -1; 
else 
stability = 1; 
end 
 
end 
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