date: 16/01/2019

Ex. 1 (Pt.12)

A digital signal is made of 3 samples: $x[n]=\{2,3,-1\}$. Working exclusively in the Discrete Frequencies domain, we want to find its continuous component (0 frequency) removing the high frequencies.

- [3 Pts.] Define the \mathbf{W} Matrix to perform the DFT of the 3 samples signal.
- [2 Pts.] Calculate $X[k]$, the DFT of the input signal.
- [3 Pts.] Define the filter $H[k]$ in the frequency domain in order to remove the high frequencies and extract the filtered signal $Y[k]$.
- [4 Pts.]Transform $H[k]$ and $Y[k]$ into their time domain representation $h[n]$ and $y[n]$ using the iDFT.

Ex. 2 (Pt.11)

A maximum phase filter has the following transfer function:

$$
H_{M}(z)=\frac{\left(1-2 \sqrt{2} z^{-1}+4 z^{-2}\right)\left(1+2 \sqrt{2} z^{-1}+4 z^{-2}\right)}{\left(4+z^{-2}\right)}
$$

1. [2 Pts.] Provide its zeros-poles plot
2. [4 Pts.] Provide its minimum phase version, $H_{m}(z)$, with exactly the same magnitude response.
3. [5 Pts.] A signal $x(t)=\cos (2 \pi 1000 t)$ is sampled at 4 kHz . Define the outputs, $y_{M}[n]$ and $y_{m}[n]$ with the proper amplitude and phase from the two filters, $H_{M}(z)$ and $H_{m}(z)$.

Ex. 3 (Pt. 11 - MATLAB code)

Given the signal x from the wavefile 'TomsDiner.wav', we want to filter it with a generic low-pass filter with one zero and one pole, and plot the comparison in the time domain

1. [2pt.] Load the wave file into x
2. [3pt.] Define a low pass filter h with 1 zero and 1 pole, placing them accordingly
3. [2 pt.] compute the difference equation representation of the IIR filter
4. [2pt.] Compute y as the filtering of the signal x with h
5. [2pt] Plot x and y as two subplots of the same figure

Solutions

Ex. 1

$$
\begin{aligned}
& \mathbf{W}=\left[\begin{array}{ccc}
e^{-j \frac{2 \pi}{3} \cdot 0 \cdot 0} & e^{-j \frac{2 \pi}{3} \cdot 0 \cdot 1} & e^{-j \frac{2 \pi}{3} \cdot 0 \cdot 2} \\
e^{-j \frac{2 \pi}{3} \cdot 100} & e^{-j \frac{2 \pi}{3} \cdot 1 \cdot 1} & e^{-j \frac{2 \pi}{3} \cdot 1 \cdot 2} \\
e^{-j \frac{2 \pi}{3} \cdot 2 \cdot 0} & e^{-j \frac{2 \pi}{3} \cdot 2 \cdot 1} & e^{-j \frac{2 \pi}{3} \cdot 2 \cdot 2}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & e^{-j \frac{2 \pi}{3}} & e^{-j \frac{4 \pi}{3}} \\
1 & e^{-j \frac{4 \pi}{3}} & e^{-j \frac{8 \pi}{3}}
\end{array}\right] \\
& X[k]=\mathbf{W} \cdot\left[\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right]=\left[\begin{array}{c}
4 \\
1-3.4641 j \\
1+3.4641 j
\end{array}\right]
\end{aligned}
$$

$$
H[k]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], Y[k]=H[k] . * X[k]=\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]
$$

$$
y[n]=\operatorname{iDFT}(Y[k])=\mathbf{W}^{-1} Y[k]=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & e^{j \frac{2 \pi}{3}} & e^{j \frac{4 \pi}{3}} \\
1 & e^{j \frac{4 \pi}{3}} & e^{j \frac{8 \pi}{3}}
\end{array}\right]\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
4 / 3 \\
4 / 3 \\
4 / 3
\end{array}\right]
$$

$$
h[n]=\operatorname{iDFT}(H[k])=\mathbf{W}^{-1} H[k]=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & e^{j \frac{2 \pi}{3}} & e^{j \frac{4 \pi}{3}} \\
1 & e^{j \frac{4 \pi}{3}} & e^{j \frac{8 \pi}{3}}
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right]
$$

Ex. 2
The zeros poles plot is:

The minimum phase filter will have the zeros in the inverse conjugate position with respect to their actual position:

$$
H_{m}(z)=16 \frac{\left(1-\frac{\sqrt{2}}{2} z^{-1}+\frac{1}{4} z^{-2}\right)\left(1+\frac{\sqrt{2}}{2} z^{-1}+\frac{1}{4} z^{-2}\right)}{\left(4+z^{-2}\right)}
$$

The normalized frequency of the signal is $\omega=2 \pi \frac{1000}{4000}=\frac{\pi}{2}$ and the filters responses will be:

$$
\begin{aligned}
& \left|H_{M}\left(z=e^{j \frac{\pi}{2}}=j\right)\right|=\frac{1+16}{4-1}=\frac{17}{3} \\
& \left|H_{m}\left(z=e^{j \frac{\pi}{2}}=j\right)\right|=16 \frac{1+\frac{1}{16}}{4-1}=\frac{17}{3} \\
& \angle\left(H_{M}\left(z=e^{j \frac{\pi}{2}}=j\right)\right)=-2 \pi \\
& \angle\left(H_{m}\left(z=e^{j \frac{\pi}{2}}=j\right)\right)=0 \\
& y_{M}[n]=y_{m}[n]=\cos \left(\frac{\pi}{2} n\right)
\end{aligned}
$$

Ex. 3
\%\% 1.[2pt.] Load the wave file into x
[x,Fs]=audioread('TomsDiner.wav');
\%\% 2.[3pt.] define a low pass filter h with 1 zero and
1 pole, placing them accordingly
\% Lowpass filter
\% Zeros close to omega=pi $\rightarrow-1$
\% Poles close to omega=0 $\rightarrow 0.9$ (inside the unit
circle!)
z=-1;
p=0.8;
\%\% 3. [2 pt.] compute the difference equation
representation of the IIR filter
b=poly(z);
a=poly(p);
\%\% 4.[2pt.] Compute y as the filtering of the signal x with h
$y=f i l \operatorname{ter}(b, a, x)$;
\%\% 5.[2pt] Plot x and y as two subplots of the same
figure
figure;
t_x=[0:length(x)-1]/Fs;
t_y=[0:length(y)-1]/Fs;
subplot (2,1,1);
plot(t_x,x);
title('Input of the filter x')
xlabel('Time [s]');
ylabel('x[n]');
subplot (2, 1, 2) ;
plot(t_y,y);
title('Output of the filter $\left.y^{\prime}\right)$
xlabel('Time [s]');
ylabel('y[n]');

