date: 7/11/2018

Ex. 1 (Pt.13)

An analog signal $x(t)=2 \cos (2 \pi 20 t)+3 \sin (2 \pi 60 t)+4 \cos (2 \pi 80 t)$ is sampled at 160 samples $/ \mathrm{s}$ and filtered with an IIR filter with the following finite differences equation:

$$
y[n]=x[n]+\sqrt{2} x[n-1]+x[n-2]-0.9 \sqrt{2} y[n-1]-0.81 y[n-2]
$$

1. [2pts] Provide the z-transform of the filter.
2. [3pts] Provide the zeros-poles plot of the filter.
3. [3pts] Represent an approximate behavior of the magnitude and phase of the filter in the range ($0-\pi$).
4. [5pts] What will be the discrete output signal when the input is the sampled version of $x(t)$?

Ex. 2 (Pt.9)

A signal $x[n]=\{1,2,2,1,0,0,1,2,2\}$ has to be downsampled of an order of 3 . In order to reduce aliasing a low pass filter $h[n]=\{1,2,3,3,2,1\}$ is adopted before downsampling in a polyphase manner.

1. [3 pts.] provide the schematics of the whole process in traditional and polyphase version.
2. [6 pts.] provide the output of every polyphase filter and the whole output of the filter.

Ex. 3 (Pt. 11 - MATLAB code)

Given the filter $h(n)=[1,0.75,0.5,0.25,0.5,0.75,1]$ with n starting from 0 and $x(t)=A \cos (2$ pift);

1. [3 pts.] Create the signal $x(t n)$ as $x(t)$ from 0 to 0.5 seconds sampled at $F s=1000 \mathrm{~Hz}, A=0.8$ and $\mathrm{f}=50 \mathrm{~Hz}$;
2. [4 pts.] Compute y_t and y_f as x filtered with h in the time and in the frequency domain, respectively
3. [3 pts.] Plot $x, y_{-} t$ and $y_{-} f$ in three subplots in the time domain (in seconds)
4. [2 pts.] BONUS: plot only the first 0.1 seconds of them. Hint: What does $A(B>c)$ mean?

Solutions

Ex. 1
The sampled signal will be:
$x[n]=2 \sin \left(\frac{\pi}{4} n\right)+3 \cos \left(\frac{3 \pi}{4} n\right)+4 \sin (\pi n)$
The z transform of the filter will be:

$$
H[z]=\frac{1+\sqrt{2} z^{-1}+z^{-2}}{1+0.9 \sqrt{2} z^{-1}+0.81 z^{-2}}
$$

The filter has two zeros in $Z_{\text {zeros }}=e^{ \pm j \frac{3}{4} \pi}$ and two poles in $Z_{\text {poles }}=0.9 e^{ \pm j \frac{3}{4} \pi}$
The zeros-poles plot is

The magnitude will be:

And the phase:

The output signal will be without the component at $60 \mathrm{~Hz}(3 / 4 \pi$ in normalized pulsations) and for the other two components we have:
$\left|H\left[z=e^{j \pi / 4}\right]\right|=\left|\frac{1+\sqrt{2}\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} j\right)-j}{1+0.9 \sqrt{2}\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} j\right)-0.81 j}\right|=\left|\frac{2-2 j}{1.9-1.71 j}\right|=\frac{|7.22-0.38 j|}{6.5341}=1.1065$
$\angle H\left[z=e^{j \pi / 4}\right]=\angle(7.22-0.38 j)=\tan ^{-1}\left(\frac{-0.38}{7.22}\right)=-0.053 \mathrm{rad}$

$$
\begin{aligned}
& \left|H\left[\mathrm{Z}=e^{j \pi}\right]\right|=\left|\frac{1-\sqrt{2}+1}{1-0.9 \sqrt{2}+0.81}\right|=1.09 \\
& \angle H\left[\mathrm{Z}=e^{j \pi}\right]=0
\end{aligned}
$$

The output will be:

$$
y[n]=2 \cdot 1.1065 \cos \left(\frac{\pi}{4} n-0.053\right)+4 \cdot 1.09 \cos (\pi n)
$$

Ex. 2
Without the polyphase implementation the output signal will be obtained convolving $x[n]$ with $h[n]$ and downsampling $(\mathrm{M}=3) y[n]=x[n] * h[n]=\{1,4,9,14,16,14,10,8,10,13,14,11,6,2\}$ and after the downsampling: $y_{d}[n]=\{1,14,10,13,6\}$

The polyphase implementation would be:

The $h_{0}=\{1,3\}$ filter will receive as input the sequence $\{1,1,1\}$, the $h_{1}=\{2,2\}$ filter will receive as input the sequence $\{0,2,0,2\}$, the $h_{2}=\{3,1\}$ filter will receive as input the sequence $\{0,2,0,2\}$

The three outputs from the 3 polyphase filters will then be
$y_{0}=\{1,4,4,3\}$
$y_{1}=\{0,4,4,4,4\}$ [Note: the first value is zero since the signal values before the first one are assumed to be equal to zero, this is the initialization value for the memory buffer].
$y_{2}=\{0,6,2,6,2\}$ [see previous note for the initial zero value].

And the total output will be the sum columwise of these outputs: $y[n]=\{1,14,10,13,6\}$

Ex. 3
clear all
close all
clc
\% Given the filter $h(n)=[1$. 75 . 5 . 25 . 5 . 75 1] with n_h
\% starting from 0 and $x(t)=A^{*} \cos (2 * p i * f * t)$;
$\mathrm{h}=\left[\begin{array}{lllllll}1 & .75 & .5 & .25 & .5 & .75 & 1\end{array}\right]$;
\% 1) create the signal $x\left(t _n\right)$ as $x(t)$ from 0 to 0.5 seconds sampled at
\% Fs=1000Hz, $A=0.8$ and $f=50 \mathrm{~Hz}$;
A=0.8; f=50;
Fs=1000;
t_n=0:1/Fs:0.5;
$\mathrm{x}=\mathrm{A}$ * $\cos \left(2^{*} \mathrm{pi}^{*} \mathrm{f} * \mathrm{t}\right.$ _n) ;
\% 2) compute y_t and y_f as x filtered with h in the time and in the
\% frequency domain, respectively
y_t=conv(x,h);
Nfft $=2^{\wedge}$ ceil(log2(length(x) + length(h)-1));
X=fft(x,Nfft); H=fft(h, Nfft);
$Y=X .{ }^{*} H$; $y=i f f t(Y)$;
$y _f=y(1: l e n g t h(x)+$ length $(h)-1) ;$
\% 3) Plot x, y_t and y_f in three subplots
\% in the time domain (in seconds)
\% bonus: try to plot only the first 0.1 seconds of them
\% hint: what does $A(B>C)$ with A, B vectors and c scalar do?
t_y=[0:length(y_t)-1]/Fs;
figure;
subplot(3,1,1);
plot(t_n(t_n<=0.1), x(t_n<=0.1)); xlabel('Time [s]');
ylabel('x(t_n)');
title('x(t_n)')
subplot(3,1,2);
plot(t_y(t_y<=0.1),y_t(t_y<=0.1)); xlabel('Time [s]');
ylabel('y_t(t_n)');
title('x filtered with h in the time domain')
subplot(3,1,3);
plot(t_y(t_y<=0.1),y_f(t_y<=0.1)); xlabel('Time [s]'); ylabel('y_f(t_n)');
title('x filtered with h in the frequency domain')

