MultimediaSignal Processing $1^{\text {st }}$ Module

 Fundamentals of Multimedia Signal Processing

 Fundamentals of Multimedia Signal Processing}

19/2/2018

Ex. 1 (Pt.14)

We want to process a signal sampled at 10 kHz using a digital band-stop filter able to:
Completely remove the component at 2.5 kHz
Preserve with the original amplitude the components at 0 kHz and at 5 kHz .
In order to design and analyze such a filter,

1. Provide the filter $\mathrm{H}[k]$ of 4 samples in the frequency domain satisfying the aforementioned constraints [2pts]
2. Define the Inverse Discrete Fourier Transform Matrix for the filter and calculate time-domain version h[n] of it [5pts]
3. Find the attenuation of the filter for a sinusoid at $1.25 \mathrm{kHz}[3 \mathrm{Pts}]$.
4. Filter the following signal $\mathrm{x}[n]$ working in the time domain using the Overlap and Add approach [4 Pts].

$$
x[n]=\{1,-1,-3,-1,1,-1,-3,-1,1\}
$$

Ex. 2 (Pt.9)

A signal is made of two sinusoids at 100 kHz and 150 kHz . The signal is sampled at 900 kHz . Which is the minimum length of a Bartlett window in order to make the two signals completely distinguishable?

Window Type	Peak Sidelobe Amplitude (Relative, $\mathrm{dB})$	Approximate Width of Main Lobe	Peak Approximation Error, 20log (δ) (dB)
Rectangular	-13	$\frac{4 \pi}{M+1}$	-21
Bartlett	-25	$\frac{8 \pi}{M}$	-25
Hann	-31	$\frac{8 \pi}{M}$	-44
Hamming	-41	$\frac{8 \pi}{M}$	-53
Blackman	-57	$\frac{12 \pi}{M}$	-74

Ex. 3 (Pt. 11 - MATLAB code)

1. [7 pts] Write a MATLAB function
$[z, p, b, a]=a l l _p a s s(z, p, b, a)$
that receives as input one among the zeros, the poles, the numerator or the denominator of the difference equations of a filter $\mathrm{H}(\mathrm{z})$, and it returns the missing elements to build an all-pass filter.

Hint: look at the following point to see the use of the function

2. [4 pts]use the function to compute

$$
[z, p, b, a]=a l l _p a s s([],[], b,[]) ;
$$

with $b=[1,-0.8,0.6]$ and plot the transfer function in $N=512$ points.

Solutions

Ex. 1
$H[k]=\{1,0,1,0\}$

$$
W^{-1}=\frac{1}{4}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right]
$$

$\mathrm{h}[\mathrm{n}]=\mathrm{W}^{-1} \mathrm{H}[\mathrm{k}]=\{.5,0, .5,0\}$
$H(z)=\frac{1}{2}+\frac{1}{2} z^{-2} \rightarrow H\left(\omega=2 \pi \frac{1.25 k H z}{10 k H z}=\frac{\pi}{4}\right)=\frac{1}{2}+\frac{1}{2} e^{-j \frac{\pi}{2}}=\frac{1}{2}-\frac{1}{2} j$
$\left|H\left(\omega=\frac{\pi}{4}\right)\right|=\frac{\sqrt{2}}{2}$
$y[n]=h[n]^{*} x[n]=\{0.5,-0.5,-1,-1,-1,-1,-1,-1,-1\}$

Ex. 2
The two signals are represented in the Frequency domain as two impulses at the normalized frequencies
$\omega_{1}=\frac{100}{900} 2 \pi=\frac{2}{9} \pi$
$\omega_{2}=\frac{150}{900} 2 \pi=\frac{1}{3} \pi$
$\Delta \omega=\frac{\pi}{9}$
The minimum length of the Bartlett window will be:
$\frac{8 \pi}{M}=\frac{\pi}{9} \rightarrow M=72$
Ex. 3
File: all_pass.m

```
function [z, p, b, a]=all_pass(z,p,b,a)
compute_ab=0;compute_zp=0;
if length(z)>0
p=1./conj(z);compute_ab=1;
elseif length(p)>0
z=1./conj(p);compute_ab=1;
elseif length(b)>0
    a=fliplr(b);compute_zp=1;
elseif length(a)>0
    b=fliplr(a);compute_zp=1;
end
ifcompute_ab==1
```

```
    a=poly(p);b=poly(z);
elseifcompute_zp==1
    p=roots(a); z=roots(b);
end
end
```

File: script.m
$\mathrm{b}=[1,-0.8,0.6]$;
[z,p,b,a]=all_pass([],[],b,[]);
N=512; [H,w]=freqz(b, a, N);
figure;
subplot(2,1,1);plot(w, abs(H));
xlabel('\omega');ylabel('|H(z)|')
title('Magnitude');
subplot(2,1,2);plot(w, angle(H));
xlabel('\omega');ylabel('angle H(z)')
title('Phase');

