Multimedia Signal Processing $1^{\text {st }}$ Module
 Fundamentals of Multimedia Signal Processing
 4/11/2017

Ex. 1 (Pt.14)

An signal presents two spurious components represented by sinusoids at 500 Hz and 1 kHz that must be removed. The signal is sampled at 4 kHz .
Propose a filter that is able to remove the two spurious components from the spectrum of the signal.

1. [5 Pts.] Provide the z transform of the filter and draw its zeros-poles plot.
2. [3 Pts.] Draw an approximate behaviour of the amplitude of the filter frequency response defining its exact gain at the zero frequency and at the Nyquist frequency
3. [2 Pts.] Provide the first 3 output samples of the impulse response of the filter.

Provide a further filter improvement that is able to alter as less as possible the original signal spectrum, (at least for its magnitude) but still removing the spurious frequencies.
4. [4 Pts.] Provide the z transform of this new filter.

Ex. 2 (Pt.9)

We want to remove the continuous component (zero frequency) from the signal $x(n)$ working directly in the frequency domain using the DFT. We want to work just on small signal portions of 4 samples.

Propose a filter $H(k)$ [3pts.] in the frequency domain and apply it to the signal (provide also the W matrix) [3pts.] in order to get our goal; for the values of the signal portion assume 4 random numbers and calculate the result iDFT of the result $y(n)$ in the time domain [3pts.]. What are the assumptions on the signal?

Ex. 3 (Pt. 11 - MATLAB code)

Given the signal $x(t)=A _1 \cos (2$ pi f_1t) + A_2 $\cos (2$ pi f_2 t)

1. Create the signal $x(n)$ as $x(t)$ with t from 0 to 0.5 seconds sampled at Fs=8000 Hz. Use A_1=0.7, A_2=0.5, f_1=1800 Hz, f_2=3600 Hz.
2. Create the signal $y(n)$ by re-sampling $x(n)$ to 6000 Hz , without using the MATLAB functions for automatic re-sampling
3. Plot the magnitude of the 2048-point DFTs of the original and resampled signal (same plot, normalized frequency)

Solutions

Ex. 1

Since we are sampling the signal at 4 kHz , in order to remove the two spurious sinusoids at 500 Hz and 1000 Hz we must completely attenuate the two normalized pulsations:
$\omega_{1}= \pm \frac{500 \mathrm{~Hz}}{4000 \mathrm{~Hz}} 2 \pi= \pm \frac{\pi}{4}$
$\omega_{2}= \pm \frac{1000 \mathrm{~Hz}}{4000 \mathrm{~Hz}} 2 \pi= \pm \frac{\pi}{2}$
So, to build the desired filter I have to place two zeros at those frequencies:
$H_{1}(z)=\left(1-2 \cos \left(\frac{\pi}{4}\right) z^{-1}+z^{-2}\right) \cdot\left(1-2 \cos \left(\frac{\pi}{2}\right) z^{-1}+z^{-2}\right)=$
$=\left(1-\sqrt{2} z^{-1}+z^{-2}\right) \cdot\left(1+z^{-2}\right)=1-\sqrt{2} z^{-1}+2 z^{-2}-\sqrt{2} z^{-3}+z^{-4}$

$H_{1}(z=1)=4-2 \sqrt{2}$
$H_{1}(z=-1)=4+2 \sqrt{2}$
To reduce the alterations of such a filter on other frequencies of the spectrum of the original signal we can place two couples of conjugate poles close to the zeros:

$$
\begin{aligned}
& H_{2}(z)=\frac{\left(1-2 \cos \left(\frac{\pi}{4}\right) z^{-1}+z^{-2}\right) \cdot\left(1-2 \cos \left(\frac{\pi}{2}\right) z^{-1}+z^{-2}\right)}{\left(1-2 \rho \cos \left(\frac{\pi}{4}\right) z^{-1}+\rho^{2} z^{-2}\right) \cdot\left(1-2 \rho \cos \left(\frac{\pi}{2}\right) z^{-1}+\rho^{2} z^{-2}\right)}= \\
& =\frac{\left(1-\sqrt{2} z^{-1}+z^{-2}\right) \cdot\left(1+z^{-2}\right)}{\left(1-\sqrt{2} \rho z^{-1}+\rho^{2} z^{-2}\right) \cdot\left(1+\rho^{2} z^{-2}\right)}=\frac{1-\sqrt{2} z^{-1}+2 z^{-2}-\sqrt{2} z^{-3}+z^{-4}}{1-\sqrt{2} \rho z^{-1}+2 \rho^{2} z^{-2}-\sqrt{2} \rho^{3} z^{-3}+\rho^{4} z^{-4}}
\end{aligned}
$$

Where a possible value for ρ could be, e.g. 0.9.

Ex. 2
The filter will be $H(k)=\left[\begin{array}{llll}0 & 1 & 1 & 1\end{array}\right]$, a signal portion could be e.g. $x(n)=\left[\begin{array}{llll}1 & 2 & -2 & 3\end{array}\right]$.

The W matrix will be:

So, $X[k]=\left[\begin{array}{llll}4 & 3+j & -6 & 3-j\end{array}\right]$. Applying the filter the result will be $Y[k]=\left[\begin{array}{llll}0 & 3+j & -6 & 3-j\end{array}\right]$ and in the time domain it will be: $y[n]=\left[\begin{array}{llll}0 & 1 & -3 & 2\end{array}\right]$.

The signal is assumed periodic with a period of 4 samples.

Ex. 3

clear all
close all
clc
\% Given the signal $x=A 1^{*} \cos \left(f 1^{*} 2^{*} p i^{*} t\right)+A 2^{*} \cos \left(f 2^{*} 2^{*} p i^{*} t\right)$;
\% 1. Create the signal x with $A 1=0.7, f 1=1800 H z, A 2=0.5$,
f2=3600Hz
\% and t from 0 to 0.5 seconds sampled at $F s=8000 \mathrm{~Hz}$
Fs=8000;
t=0:1/Fs:0.5;
A1=0.7; f1=1800; A2=0.5; f2=3600;
$x=A 1^{*} \cos \left(2^{*} p i^{*} f 1^{*} t\right)+A 2^{*} \cos \left(2^{*} p i^{*} f 2^{*} t\right)$;
\% 2. Create the signal y by re-sampling x to 6000 Hz
\% (without using the MATLAB functions for automatic resampling)
$\mathrm{q}=6000 / \mathrm{Fs}$;
[L, M]=rat(q);
y_int=zeros(1, length (x)*L);
y_int(1:L:end)=x;
y_int=filter(fir1(63, 1/L), 1, y_int);
y_dec=filter(M*fir1(63,1/M), 1,y_int);
$y=y _d e c(1: M: e n d) ;$
\% 3. Plot the magnitude of the 2048-point DFTs of the original and the resampled
\% signal (same plot, normalized frequency);
Nfft=2048;
X=fft(x, Nfft);
$Y=f f t(y, N f f t)$;
w_norm=linspace(0,2,Nfft);
figure;
plot(w_norm, abs(X)); hold on
plot(w_norm, abs(Y)); hold off
xlabel('normalized \omega');
ylabel('|X(k)|, |Y(k)|');
title('Magnitude of the DFT');
legend('Original Signal', 'Resampled signal');

