21/11/2016

Ex.1 (Pt.11)

A signal is sampled at 80kHz. We want to transform the sampled digital signal into a signal sampled at 120kHz.

1) Define the whole pipeline to get this result providing accurate description of the filters adopted both for sampling and re-sampling.

We want to re-sample the signal in real-time working on blocks of 1024 samples and in the frequency domain.

- 2) Describe how the DFT can be obtained, provide how the transform matrix can be realized for this specific case and the operations to get the DFT of the input signal
- 3) Define a proper filter in the frequency domain for the specific task of question 1 and how it has to be applied to the signal.
- 4) Describe how the filtered signal can be transformed back into the time domain. Are there issues related to circular convolution for periodicity assumption for this specific case?

Ex.2 (Pt.11)

The following signal:

$$x(t) = 5 + 3\cos(2\pi f_1 t) + \cos(2\pi f_2 t), \tag{1}$$

where $f_1 = 10kHz$ and $f_2 = 40kHz$ is sampled at 80kHz and is filtered with the following filter:

$$H(z) = \frac{1 - \sqrt{2}z^{-1} + z^{-2}}{1 - 0.7\sqrt{2}z^{-1} + 0.49z^{-2}}$$

Plot the filter in the z-plane and provide the output signal in the time domain.

Ex.3 (Pt. 11 – MATLAB code)

- 1) Generate 1024 from the signal (1) of exercise 2.
- Apply all the steps in order to change the sample rate as described in Exercise 1. NOTE: the DFT must be implemented from scratch without using the fft function.
- 3) Plot the first 512 samples of the output signal

Solutions

Ex.1

The signal has to be upsampled of an order of 3 and downsampled of an order of 2. This will allow to move from 80kHz -> 240kHz->120kHz.

During upsampling the spectrum will be compressed of an order or 3 and a replica will appear below the Nyquist frequency as depicted in the following figure:

in cyan it is represented the region below the Nyquist frequencies before and after the upsampling.

The low pass filter for upsampling must then cut frequencies above $\frac{\pi}{3}$ to remove replicas below the Nyquist frequencies. For the downsampling step the low-pass filter should cut frequencies above $\frac{\pi}{2}$ to prevent aliasing, so, the low pass filter for the upsampling (which is already removing frequencies above $\frac{\pi}{3}$) is already removing aliasing risk also for the downsampling stage.

In order to apply the upsampling and then the filter in the frequency domain I need to take 1024 samples from the signal, add two samples with zero value every sample and then define the DFT Matrix:

The DFT kernel is $w = e^{j\frac{2\pi}{3\cdot 1024}} = e^{j\frac{\pi}{1536}}$ so, the W matrix for the DFT will be a 3072x3072 matrix where $\mathbf{W}_{r,c} = w^{-r \cdot c}$

Once I multiply this matrix with the set of upsampled samples I get the DFT of the upsampled signal, in order to apply the low pass filter in the frequency domain, I have to remove all the frequencies between $\frac{\pi}{3}$ and $\frac{5}{3}\pi$ (since now I have to consider that my spectrum is represented in the frequency range between 0 and 2π).

This can be done simply setting to zero all frequencies between the 513th sample (3072/6+1) and the 2560th sample (3072*5/6) of the DFT of my signal which is exactly a low-pass filter rectangular in the frequency domain.

In order to go back into the time domain we have to pre-multiply the 3072 samples in the frequency domain

with the matrix:
$$\mathbf{W}_{r,c}^* = \frac{1}{3072} w^{r \cdot c}$$

Analyzing what we are performing in the time domain, since we are multiplying the spectrum of upsampled signal with a low pass rectangle filter we are implicitly performing a circular convolution with the iDFT of the rectangle filter: $h(n) = \operatorname{sinc}\left(\frac{n}{3}\right)$ whose range of the first lobe is 6 samples. We can then conclude that for a generic signal the circular convolution error is present and, due to the narrowness of the filter its effect operates significantly just of a few samples close to the signal tails. However, since in this case the signal is input periodic and the number of samples considered is a multiple of the samples in a period no error will be introduced.

Ex.2

The spectrum of the signal will be the following: $X(f) = 5\delta(f) + \frac{3}{2}\delta(f \pm f_1) + \frac{1}{2}\delta(f \pm f_2)$; after sampling in normalized frequencies it will become: $X(f) = 5\delta(f) + \frac{3}{2}\delta(f \pm \frac{f_1}{f_s}) + \frac{1}{2}\delta(f \pm \frac{f_2}{f_s}) =$

$$=5\delta(f)+\frac{3}{2}\delta\left(f\pm\frac{f_1}{f_s}\right)+\frac{1}{2}\delta\left(f\pm\frac{f_2}{f_s}\right)=5\delta(\omega)+\frac{3}{2}\delta\left(\omega\pm\frac{\pi}{4}\right)+\delta(\omega-\pi).$$

Applying the filter H(z) that has the following zeros and poles: two zeros on the unit circle at $z_{1,2} = e^{\pm j\frac{\pi}{4}}$ and two poles $p_{1,2} = 0.7e^{\pm j\frac{\pi}{4}}$.

Such a filter will remove the two conjugate poles associated to the sinusoid at f_1 , the other two components (the continuous component and the Nyquist component) will get the following amplification:

$$H(\omega = 0 \to z = 1) = \frac{2 - \sqrt{2}}{1.49 - 0.7\sqrt{2}} \approx 1.17$$
$$H(\omega = \pi \to z = -1) = \frac{2 + \sqrt{2}}{1.49 + 0.7\sqrt{2}} \approx 1.38$$

The output will then be:

$$y(n) = 5 \cdot 1.17 + 1.38 \cdot \cos\left(2\pi \frac{f_2}{f_s}n\right) = 5.85 + 1.38 \cdot (-1)^n$$

Ex.3

```
n = [0:1023];
fs=80000;
f1=10000;
f2=40000;
x=5+3*cos(2*pi*f1/fs*n)+cos(2*pi*f2/fs*n);
x up=zeros(1,3*length(n));
x up(1:3:3*1024)=x;
index=[0:1024*3-1];%row and column index
W = \exp(-j*2*pi/(3*1024)*(index'*index));
X up=W*x up';
% the low pass will remove all frequencies between pi/3
and 5/3 pi
Y=X up;
Y(1024*3/6+1:1024*3*5/6) = 0;
y=(1/(3*1024))*conj(W)*Y;%inverse DFT
y down=y(1:2:end);
stem(y down(1:512));
```