
Multimedia Signal Processing 1st Module

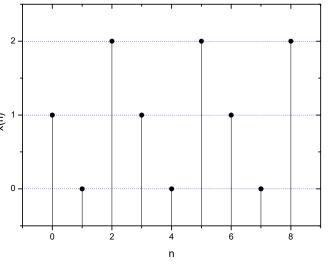
23/2/2016

Ex.1 (Pt.13)

A filter $H_1(z)$ presents the following zero-pole plot:

Where the two zeros are in $1\pm\sqrt{3}\,j$. Define a minimum phase filter $H_2\!\left(z\right)$ with **exactly** the same amplitude response.

Define a pure IIR filter $H_3(z)$ that, placed after the filter $H_2(z)$ is able to completely remove its effect.


Find the first five output samples of the impulse response of filters $H_1(z)$, $H_2(z)$ and $H_3(z)$.

Ex.2 (Pt.9)

We want to remove the continuous component (zero frequency) from the periodic signal x(n) represented on the right just working with the DFT.

Propose a filter H(k) in the frequency domain and apply it to the signal (provide also the W matrix).

Provide also the output in the time domain y(n) and a period of the filter in the time domain h(n).

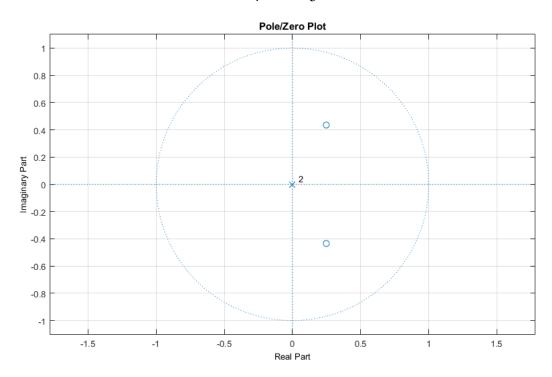
Ex.3 (Pt. 11 - MATLAB code)

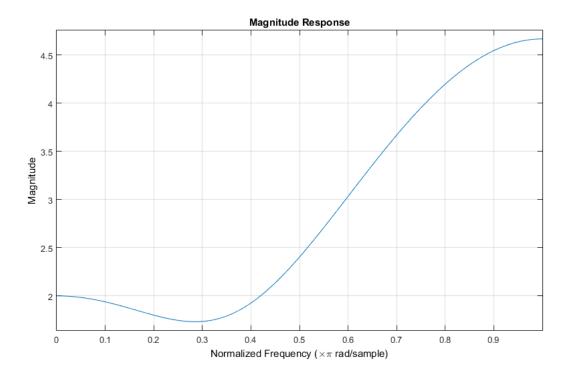
Consider a musical signal stored in the file 'music.wav'.

- 1) Load the signal and display the number of channels. If the signal is multichannel (> 1 channel), convert it to mono (1 channel).
- 2) Select the first 5 s of the signal
- 3) Generate a sinusoidal disturbance with frequency 5 kHz and amplitude 0.01 and add it to the musical signal.
- 4) We want to remove the disturbance using a filter h(n) whose z-transform is 1 1.5136 z^(-1) + z^(-2)

Write the appropriate commands to plot the zero-pole diagram of H(z) and its frequency response H(jW).

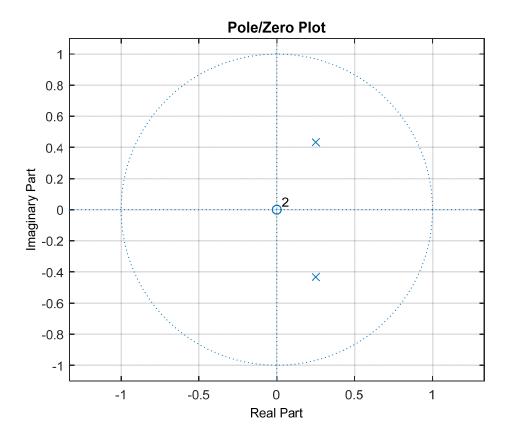
5) Filter the disturbed signal with the filter defined in point 4.

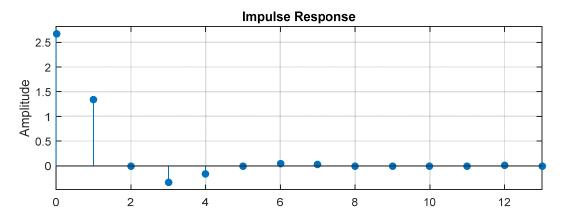

Solutions


Ex.1

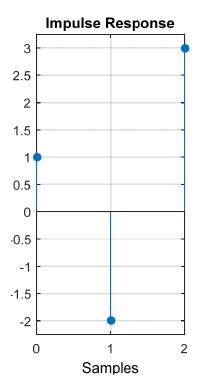
$$H_1(z) = 1 - 2z^{-1} + 3z^{-2}$$

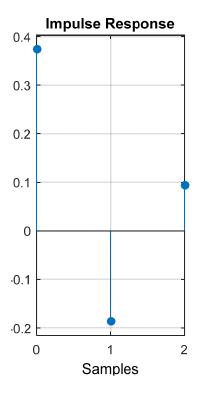
$$H_2(z) = A\left(1 - \frac{1}{2}z^{-1} + \frac{1}{4}z^{-2}\right)$$


Imposing, e.g.
$$H_1(z=1) = H_2(z=1) \Rightarrow 2 = A \cdot \frac{3}{4} \Rightarrow A = \frac{8}{3}$$



Which is the same for $\,H_{1}\!\left(z\right)$ and $\,H_{2}\!\left(z\right)$.


The IIR filter is
$$H_3(z) = \frac{3}{8} \frac{1}{1 - \frac{1}{2}z^{-1} + \frac{1}{4}z^{-2}}$$


its impulse response is:

The impulse response for $H_1(z)$ is:

and for $H_2(z)$

Ex.2
The W Matrix will be:

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -\frac{1}{2} + \frac{\sqrt{3}}{2} j & -\frac{1}{2} - \frac{\sqrt{3}}{2} j \\ 1 & -\frac{1}{2} - \frac{\sqrt{3}}{2} j & -\frac{1}{2} + \frac{\sqrt{3}}{2} j \end{bmatrix}$$

the DFT of x(n) will be:

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -\frac{1}{2} - \frac{\sqrt{3}}{2} j & -\frac{1}{2} + \frac{\sqrt{3}}{2} j \\ 1 & -\frac{1}{2} + \frac{\sqrt{3}}{2} j & -\frac{1}{2} - \frac{\sqrt{3}}{2} j \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ \sqrt{3} j \\ -\sqrt{3} j \end{bmatrix}$$

The filter H(k) will be

$$H(k) = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

so the output signal in frequency domain will be

$$Y(k) = X(k) \cdot H(k) = \begin{bmatrix} 0 \\ \sqrt{3}j \\ -\sqrt{3}j \end{bmatrix}$$

and
$$y(n) = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$$

```
Ex.3
clear
clc
close all
% Consider a musical signal stored in the file 'music.wav'.
% 1) Load the signal and display the number of channels. If the signal is
multichannel (> 1 channel),
% convert it to mono (1 channel).
[y, Fs] = audioread('music.wav');
n_{ch} = size(y,2);
disp(['The number of channels is ' num2str(n_ch)]);
if n_ch > 1
   y = sum(y,2)/n_ch;
% 2) Select the first 5 s of the signal
dur = 5;
y = y(1:dur*Fs);
n = (0:length(y)-1)';
t = n/Fs;
figure
plot(t,y)
xlabel('Time [s]'), ylabel('Amplitude')
title('Original signal')
% 3) Generate a sinusoidal disturbance with frequency 5 kHz and amplitude 0.01 and
add
% it to the musical signal.
fd = 5000;
d = 0.01*sin(2*pi*fd*n/Fs);
yd = y+d;
figure
plot(t,yd)
xlabel('Time [s]'), ylabel('Amplitude')
title('Disturbed signal')
% 4) We want to remove the disturbance using a filter h(n) whose z-transform is
    1 - 1.5136 z^{(-1)} + z^{(-2)}
% H(z) = -----
           1 - 1.5060 z^{(-1)} + 0.99 z^{(-2)}
% Write the appropriate commands to plot the zero-pole diagram of H(z) and its
frequency response H(jW).
num = [1 -1.5163 1];
den = [1 -1.5060 0.99];
figure
zplane(num, den);
figure
freqz(num, den, 512, Fs);
```

% 5) Filter the disturbed signal with the filter defined in point 4. yd_f = filter(num, den, yd);