Multimedia Signal Processing 1st Module

3 /7/2013

Ex.1 (Pt.12)

A filter follows this scheme:

- 1. Define its z-transform between input and output.
- 2. Is it stable or not? Is it a maximum or a minimum phase filter?
- 3. Plot its zero-poles diagram.
- 4. Provide an approximate plot of its amplitude over the range of normalized frequencies.

Ex.2 (Pt.10)

Describe the downsampling of an order of 5 of a signal: (where M=5).

- 1. If the spectrum of original signal extends from $-\pi/4$ to $\pi/4$ (in normalized frequencies) draw the final spectrum after downsampling (quoting both axes and indicating central frequencies for all the replicas)
- If aliasing is present in the downsampled signal, suggest a way to avoid it (keeping the same downsampling rate).

Ex.3 (Pt. 11 - MATLAB code)

- a) Build a signal sum of three different sinusoids $\sin(2\pi ft)$ at the radian frequencies $w1 = \pi/8$, $w2 = \pi/10$ $w3 = \pi/3$. The signal is defined over a temporal axis of 512 samples. (Assume that the sampling period T=1).
- b) Upsample the signal by a factor L=4.
- c) Interpolate the signal by a factor L=4 using the Matlab function 'fir1' for designing the filter, but not the function 'interp'.
- d) Plot original, uplsampled and interpolated signals in the time and in the frequency domain (only modula).

Solutions

Ex.1

$$X(z)\left(1-\frac{z^{-3}}{8}\right) = Y(z)\left(1+\frac{z^{-3}}{8}\right)$$

The filter is stable and with minimum phase since all poles and zeros are inside the unit circle.

Ex.2

After downsampling there will be aliasing and a low pass filter at $\,\pi\,/\,5$ is required.

```
Ex. 3
clc
clear all
close all
Nfft=1024;
N=41;
M=4;
fc=1/(2*M)
h = fir1(N, 2*fc);
w1=pi/8;
w2=pi/10;
w3=pi/3;
n=[0:512];
x = \sin(w1*n) + \sin(w2*n) + \sin(w3*n);
xup = zeros(M*length(x), 1);
xup(1:M:end) = x;
xint = filter(M*h, 1, xup);
figure,
subplot(3,1,1), plot(x)
subplot(3,1,2), plot(xup)
subplot(3,1,3), plot(xint)
[H, w] = freqz(x,1,1024);
[Hup, w] = freqz(xup,1,1024);
[Hint, w] = freqz(xint,1,1024);
figure,
w=2*pi*[0:Nfft-1]./Nfft;
subplot(3,1,1), plot(w, 10*log10(abs(H).^2))
subplot(3,1,2), plot(w, 10*log10(abs(Hup).^2), 'g-.');
subplot(3,1,3), plot(w, 10*log10(abs(Hint).^2), 'r--');
```