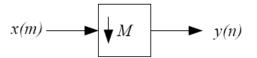
Multimedia Signal Processing 1st Module

6 /7/2011

Ex.1 (Pt.10)


Consider the following filter $H_1(z)$, it is applied to a signal sampled at 200 Hz.

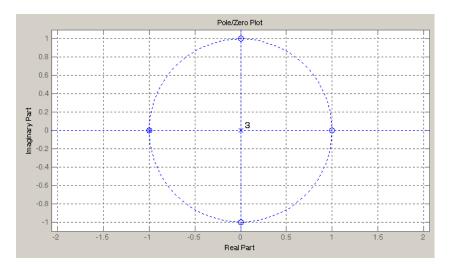
$$H_1(z) = \frac{1 - z^{-4}}{1 + z^{-1}}$$

- 1. What kind of filter is it? Explain why it could be useful to remove power supply noise at 50 Hz.
- 2. If the input signal is $x(n) = 5\cos(2\pi \cdot 100 \cdot n)$ what will be the amplitude of the output?
- 3. Define the impulse response h(n) of the filter.

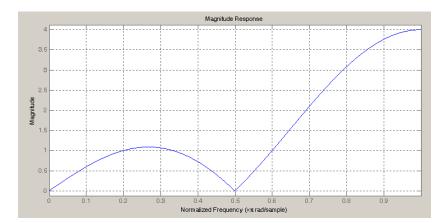
Ex.2 (Pt.10)

Describe the downsampling of an order of 4 of a signal: (where M=4).

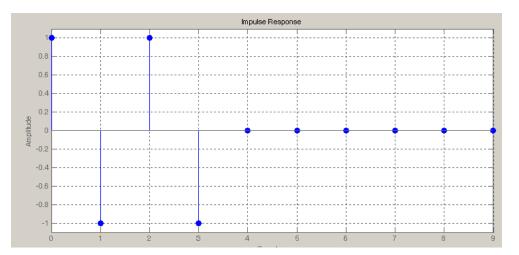
- 1. If the original signal spectrum extends from $-\pi/3$ to $\pi/3$ (in normalized frequencies) draw the final spectrum after downsampling (quoting both axes).
- 2. How can be avoided aliasing? Describe the optimal decimation chain for this case.


Ex.3 (Pt.10) MATLAB

- 1. Load the waveform 'voiced_a.wav' and determine the sampling frequency Fs.
- 2. Consider a LTI digital filter characterized by the following difference equation: h(n) = -0.99 y(n-1) + x(n)
- 3. Compute its impulse response for $0 \le n \le 1000$.
- Filter the input sequence x(n) with h(n) computing the convolution by means the OLA approach: segment the signal x(n) into overlapping frames of length 40ms using a Bartlett window at 50% overlap.


Solutions

Ex.1:


The zeros-poles diagram is:

The amplitude response is:

The impulse response is:

