POLITECNICO MILANO 1863

Tomography

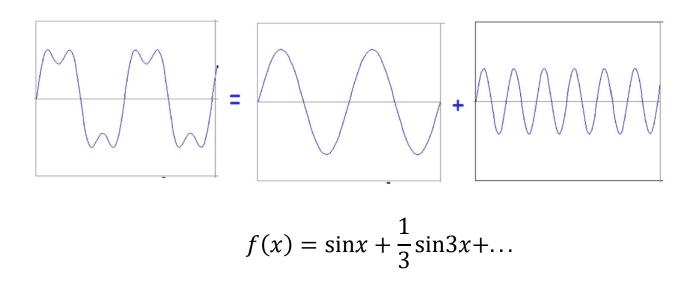
Marco Marcon

Outline

- 2D Fourier Transform
- 2D Discrete Fourier Transform
- Hough Transform
- From Hough to Radon transform
- Lambert-Beer principle
- Computed Tomography
- Filtered Back Projection
- ART and SART methods
- Multispectral acquisitions
- Phase-contrast Tomography

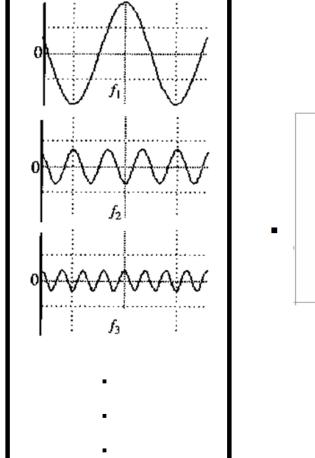
Fourier series reminder

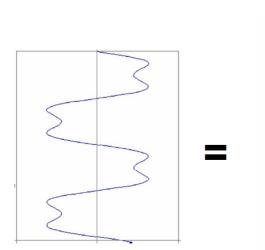
Example



Marco Marcon - Tomography

Fourier series: just a change of basis





Marco Marcon - Tomography

POLITECNICO MILANO 1863

0.3

0

-h

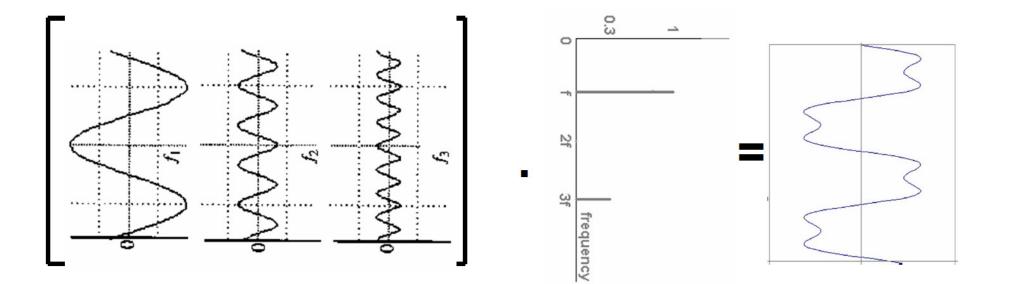
N

Ϋ́

frequency

 \rightarrow

Inverse FT: Just a change of basis



Marco Marcon - Tomography

The 2D Fourier Transform

The analysis and synthesis formulas for the 2D continuous Fourier transform are as follows: Analysis

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi(ux+vy)} dx \, dy$$

Synthesis

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{j2\pi(ux+vy)} du \, dv$$

Marco Marcon - Tomography

Separability of 2D Fourier Transform

The 2D analysis formula can be written as a 1D analysis in the *x* direction followed by a 1D analysis in the *y* direction:

$$F(u,v) = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} f(x,y) e^{-j2\pi ux} dx \right] e^{-j2\pi vy} dy$$

The 2D synthesis formula can be written as a 1D synthesis in the *x* direction followed by a 1D synthesis in *y* direction:

$$f(x,y) = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} F(u,v) e^{j2\pi u x} du \right] e^{j2\pi v y} dv$$

The Discrete Fourier Transform (DFT)

The Discrete Fourier Transform (for sampled signals) can be written as: $X[k] = \sum_{n=0}^{N-1} x[n]e^{-j(2\pi/N)kn}.$

With this notation the DFT Analysis and Synthesis pair becomes:

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}$$
$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}.$$

POLITECNICO MILANO 1863

The DFT for N samples can be obtained as the multiplication of the N samples by the W matrix $W = W_N^{kn}\Big|_{k,n=0,\dots,N-1}$

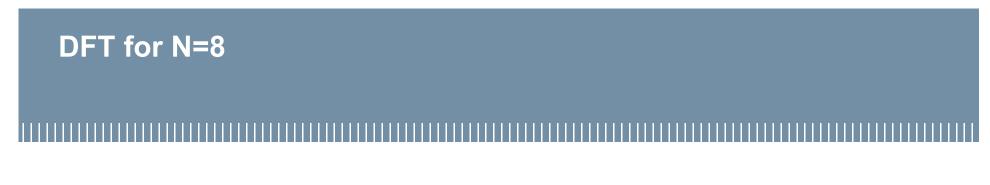
$$W = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & W_N & W_N^2 & W_N^3 & \cdots & W_N^{N-1} \\ 1 & W_N^2 & W_N^4 & W_N^6 & \cdots & W_N^{2(N-1)} \\ 1 & W_N^3 & W_N^6 & W_N^9 & \cdots & W_N^{3(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & W_N^{N-1} & W_N^{2(N-1)} & W_N^{3(N-1)} & \cdots & W_N^{(N-1)(N-1)} \end{bmatrix}$$

Marco Marcon - Tomography

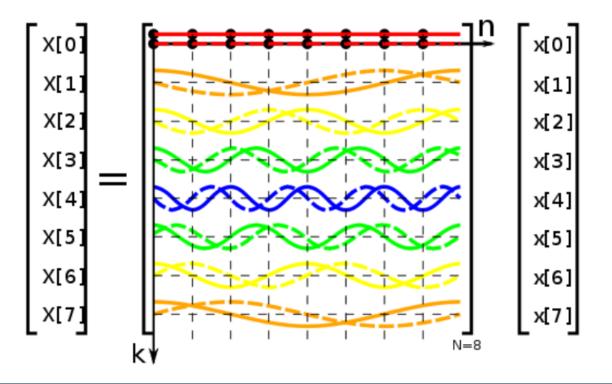
DFT examples

N=2	$W = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
N=4	$W = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix}$
N=8	$W = \begin{bmatrix} W_8^0 & W_8^0 & W_8^0 & W_8^0 & \cdots & W_8^0 \\ W_8^0 & W_8^1 & W_8^2 & W_8^3 & \cdots & W_8^7 \\ W_8^0 & W_8^2 & W_8^4 & W_8^6 & \cdots & W_8^{14} \\ W_8^0 & W_8^3 & W_8^6 & W_8^9 & \cdots & W_8^{21} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ W_8^0 & W_8^7 & W_8^{14} & W_8^{21} & \cdots & W_8^{49} \end{bmatrix} \qquad \qquad W_8 = e^{-j\frac{2\pi}{8}} = \frac{1}{\sqrt{2}} - \frac{j}{\sqrt{2}}$

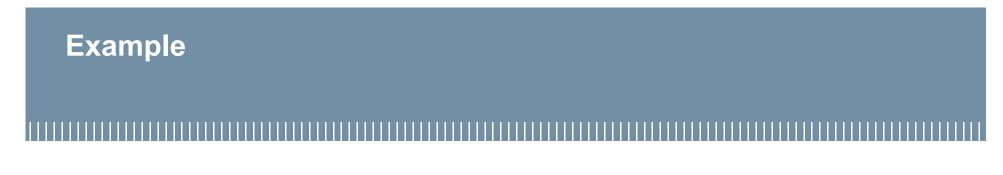
Marco Marcon - Tomography



The DFT for N samples seen as the projection on N complex exponential sequences



Marco Marcon - Tomography



Consider a periodic signal whose period is [0 1 2 3] If we want to get the DFT of the input signal we can write:

$$X = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 6 \\ -2+2j \\ -2 \\ -2-2j \end{bmatrix}$$

Marco Marcon - Tomography

Inverse DFT

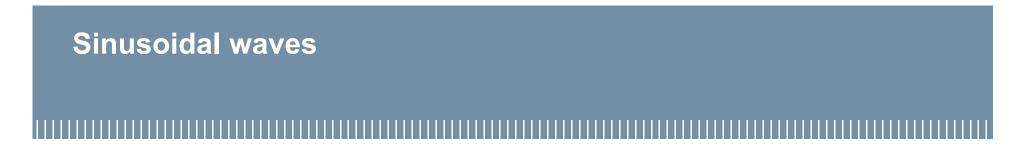
The inverse of the W matrix will be equal to its conjugate transpose divided by N, for example for N=4

$$W^{-1} = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix}$$

The iDFT for the previous example will then be:

$$y = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix} \begin{bmatrix} 6 \\ -2 - 2j \\ -2 \\ -2 - 2j \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}$$

Marco Marcon - Tomography

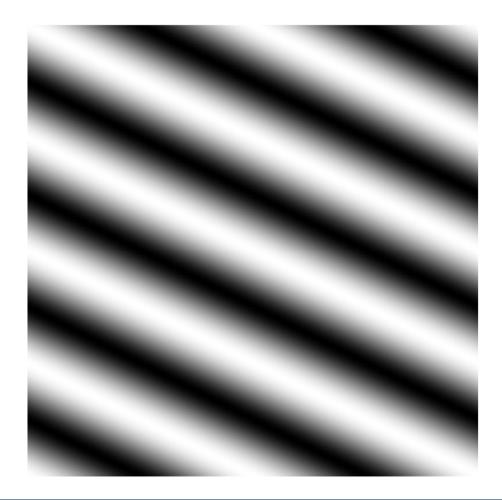


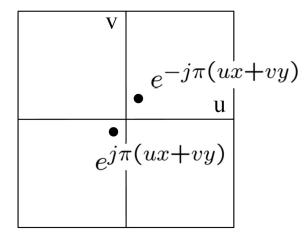
The 2D Fourier Transform is based on a decomposition into complex functions:

$$e^{j2\pi(ux+vy)} = \cos 2\pi(ux+vy) + j\sin 2\pi(ux+vy)$$

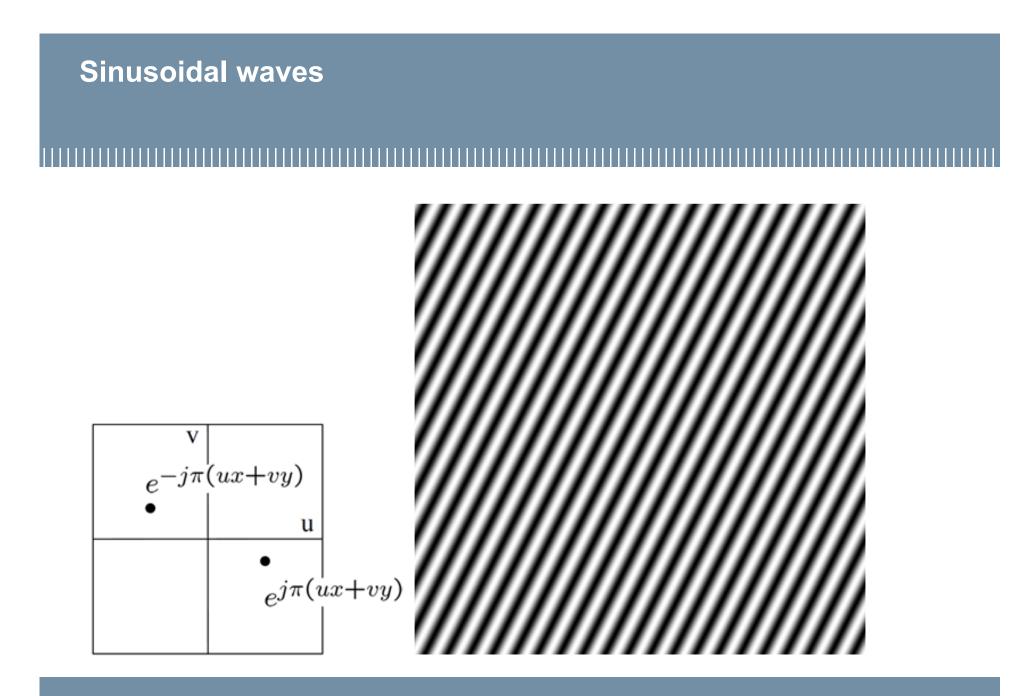
The real and imaginary terms are sinusoids on the *x*, *y* plane.

Sinusoidal waves

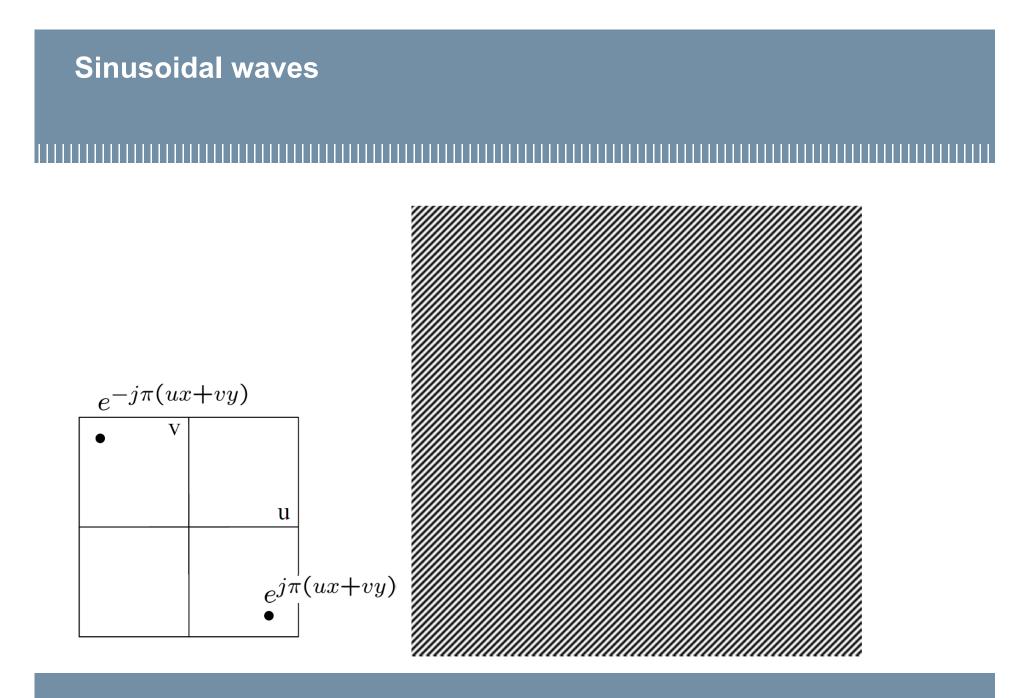




POLITECNICO MILANO 1863



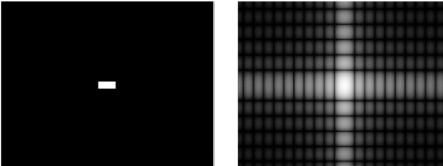
Marco Marcon - Tomography

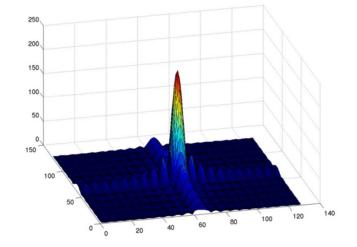


Marco Marcon - Tomography

Fourier Transform Pair example

$$\begin{split} (u,v) &= \int \int f(x,y) e^{-j2\pi(ux+vy)} dx dy, \\ &= \int_{-X/2}^{X/2} e^{-j2\pi ux} dx \int_{-Y/2}^{Y/2} e^{-j2\pi vy} dy, \\ &= \left[\frac{e^{-j2\pi ux}}{-j2\pi u} \right]_{-X/2}^{X/2} \left[\frac{e^{-j2\pi vy}}{-j2\pi v} \right]_{-Y/2}^{Y/2}, \\ &= \frac{1}{-j2\pi u} \left[e^{-juX} - e^{juX} \right] \frac{1}{-j2\pi v} \left[e^{-jvY} - e^{jvY} \right], \\ &= XY \left[\frac{sin(\pi Xu)}{\pi Xu} \right] \left[\frac{sin(2\pi Yv)}{\pi Yv} \right] \\ &= XY \text{sinc}(\pi Xu) \text{sinc}(\pi Yv). \end{split}$$





POLITECNICO MILANO 1863

Marco Marcon - Tomography

F

The 2D Discrete Fourier Transform for periodic signals

The analysis and synthesis formulas for the 2D discrete Fourier transform are as follows:

Analysis

$$\hat{F}(k,\ell) = \frac{1}{\sqrt{MN}} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} F(m,n) e^{-j2\pi \left(k\frac{m}{M} + \ell\frac{n}{N}\right)}$$

Synthesis

$$F(m,n) = \frac{1}{\sqrt{MN}} \sum_{k=0}^{M-1} \sum_{\ell=0}^{N-1} \hat{F}(k,\ell) e^{j2\pi \left(k\frac{m}{M} + \ell\frac{n}{N}\right)}$$

Separability of 2D Discrete Fourier Transform

$$\hat{F}(k,\ell) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \left[\frac{1}{\sqrt{M}} \sum_{m=0}^{M-1} F(m,n) e^{-j2\pi \left(k\frac{m}{M}\right)} \right] e^{-j2\pi \left(\ell\frac{n}{N}\right)}$$

The 2D forward DFT (for a squared input matrix of size SxS) can be written in matrix notation:

$$\hat{\mathbf{F}} = (\mathbf{W}^* \mathbf{F}) \mathbf{W}^*$$

Where *r* and *c* are row and column indexes starting from zero.

$$W_{rc}^* = \frac{1}{\sqrt{S}} e^{-j2\pi \frac{rc}{S}}$$

Separability of 2D Discrete Fourier Transform

 $F(m,n) = \frac{1}{\sqrt{N}} \sum_{\ell=0}^{N-1} \left[\frac{1}{\sqrt{M}} \sum_{k=0}^{M-1} \hat{F}(k,\ell) e^{j2\pi \left(k\frac{m}{M}\right)} \right] e^{j2\pi \left(\ell\frac{n}{N}\right)}.$

The 2D inverse DFT can be written in matrix notation:

$$\mathbf{F} = (\mathbf{W}\hat{\mathbf{F}})\mathbf{W}$$

Where the matrix elements are

And

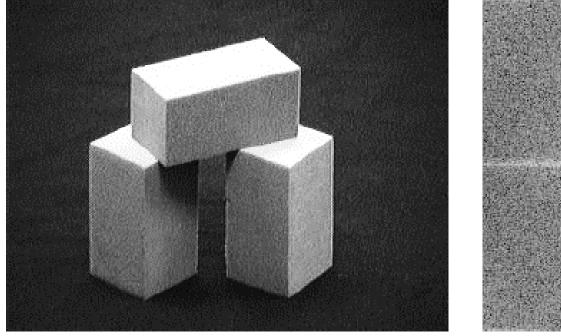
$$W_{rc} = \frac{1}{\sqrt{A}} e^{j2\pi \frac{rc}{A}}$$

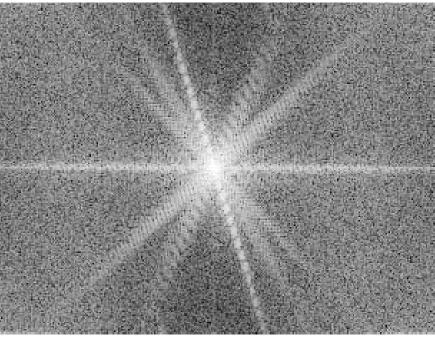
POLITECNICO MILANO 1863

Transform examples

POLITECNICO MILANO 1863

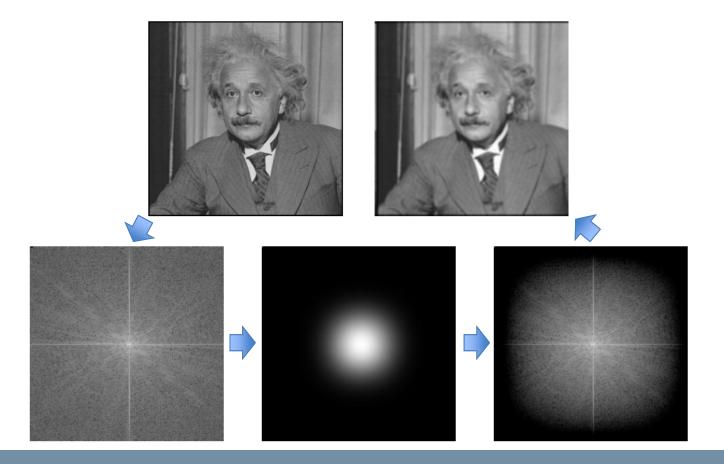
2D DFT Example





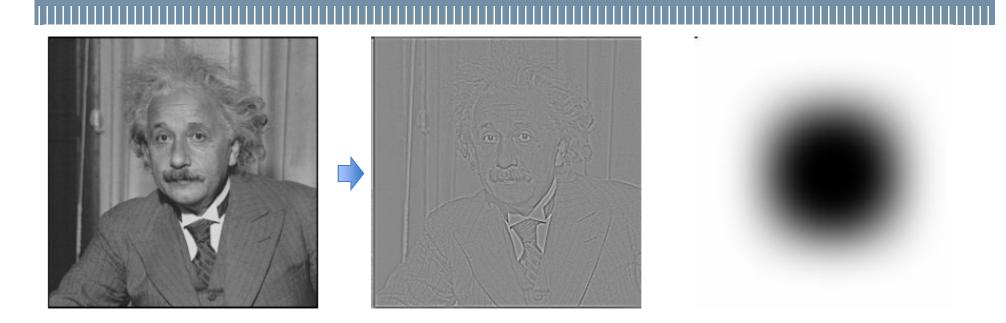
Marco Marcon - Tomography

low-pass (blurred) version of an image



Marco Marcon - Tomography

Hi-Pass Filter



a high-pass filtered version of Albert, and the amplitude spectrum of the filter. This impulse response is defined by $\delta(n)$ -h(n,m) where h(n,m) is the separable blurring kernel used in the previous figure

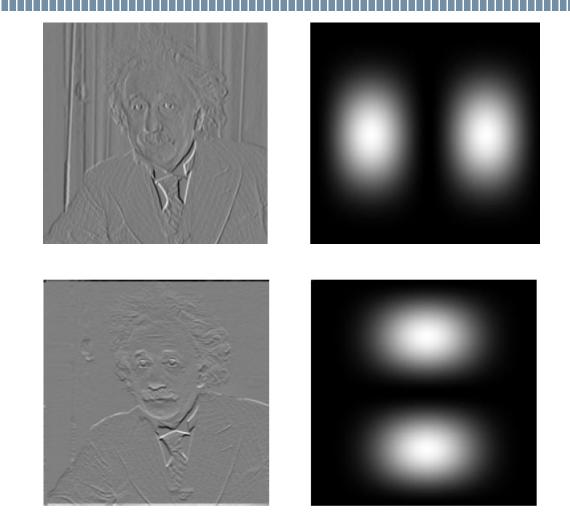
Marco Marcon - Tomography

Band Pass Filter

a band-pass filtered version of Albert, and the amplitude spectrum of the filter.

This impulse response is defined by the difference of two low-pass filters.

Directional filters



POLITECNICO MILANO 1863

Hough Transform

Goal: recognize lines in images

Approach:

- For every point in the starting image plot the sinusoid on the dual plane (parameter space): (ρ, β)

 $\rho = x^* \cos(\vartheta) + y^* \sin(\vartheta)$

where x and y are fixed (the considered point coordinates) while ρ and ϑ are variables.

- The Hough Transform of an image with K lines is the sum of many sinusoids intersecting in K points.
- Maxima in the dual plane indicate the parameters of the k lines

Consider a discretization of the dual plane for the parameters (ρ, ϑ) : it becomes a matrix whose raw and column indices correspond to the quantized values of ρ and ϑ . The limits of ρ are chosen accordingly to the image size.

Usually: $-\rho_{max} \le \rho \le \rho_{max}$, $-\pi/2 \le \vartheta \le \pi/2$

Hough: implementazion

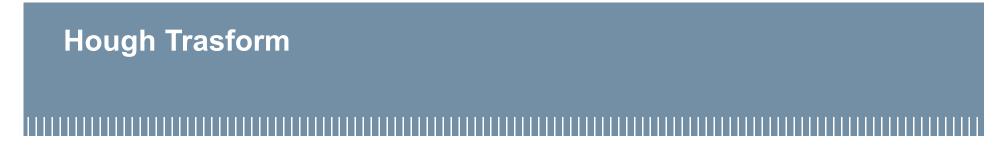
Clear the matrix H(m,n);

Fro every point P(x,y) of the image

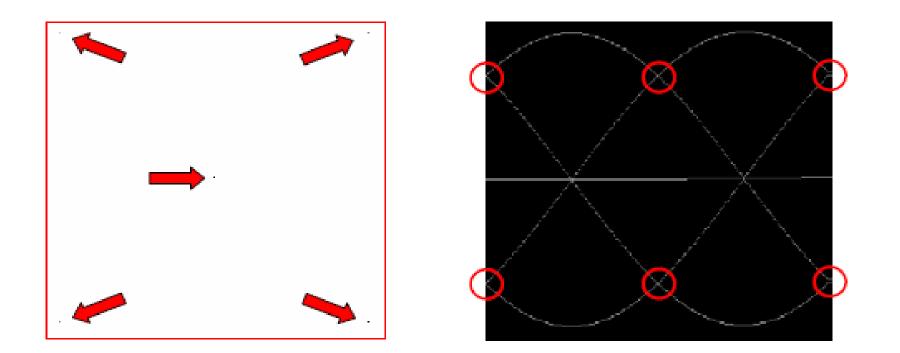
- 1. for ϑ_n that ranges from $-\pi/2$ to $\pi/2$ with step d ϑ
 - 1. Evaluate $\rho(n)=x^*\cos(\vartheta_n)+y^*\sin(\vartheta_n)$
 - 2. find the index *m* corresponding to $\rho(n)$
 - 3. Increase H(m,n)
- 2. end

end

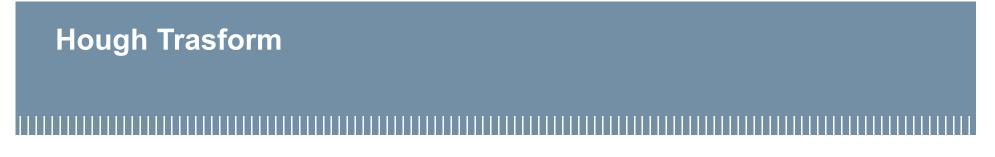
4. Find local maxima in H(.,.) that will corresponds to parameters of the founded lines



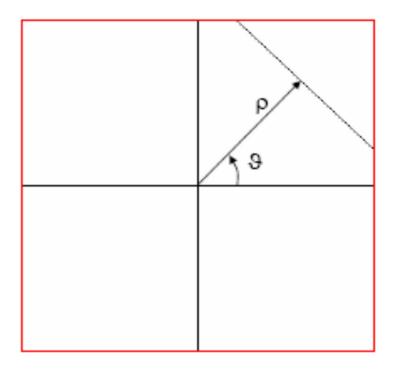
5 points

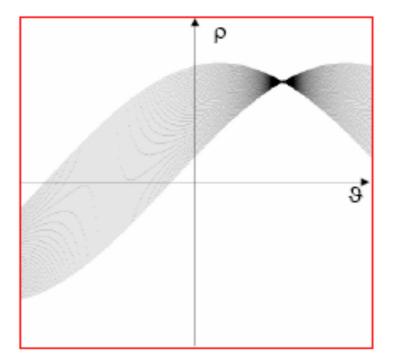


POLITECNICO MILANO 1863

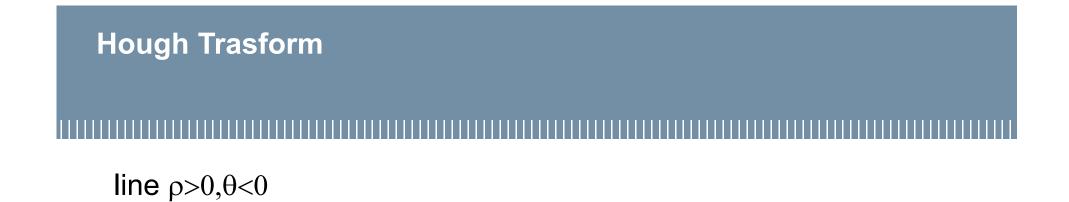


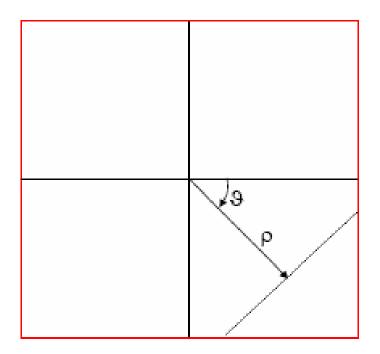
line $\rho > 0, \theta > 0$

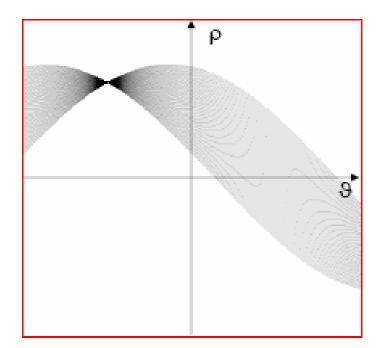




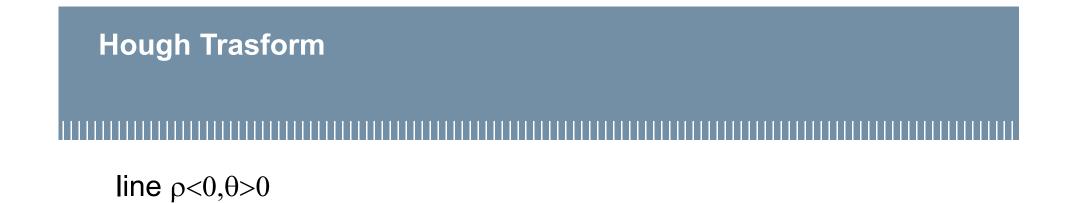
Marco Marcon - Tomography

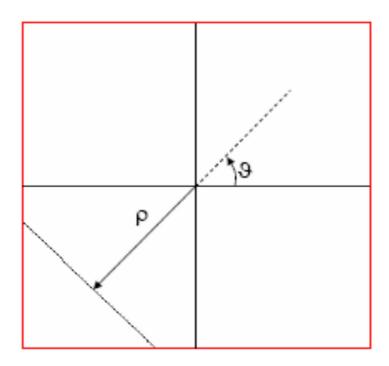


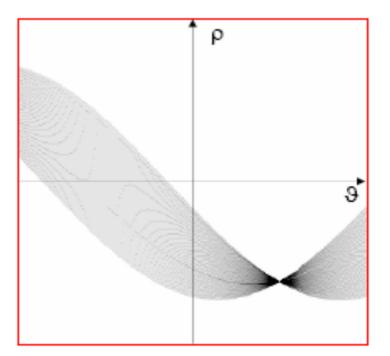




Marco Marcon - Tomography

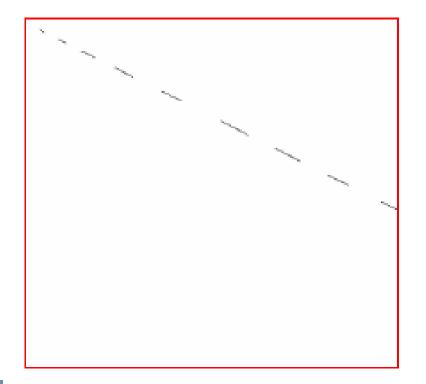


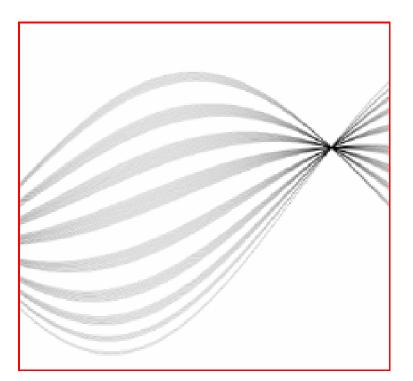




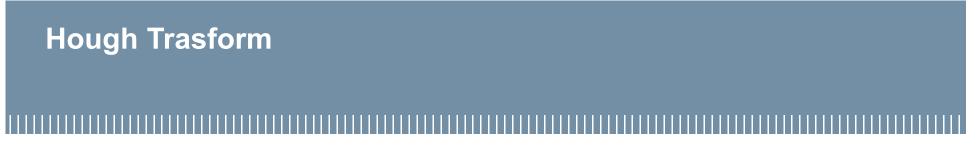
POLITECNICO MILANO 1863

Dotted line

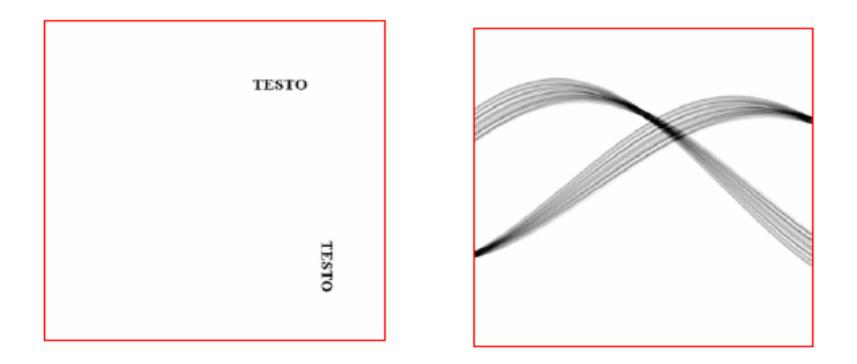




POLITECNICO MILANO 1863



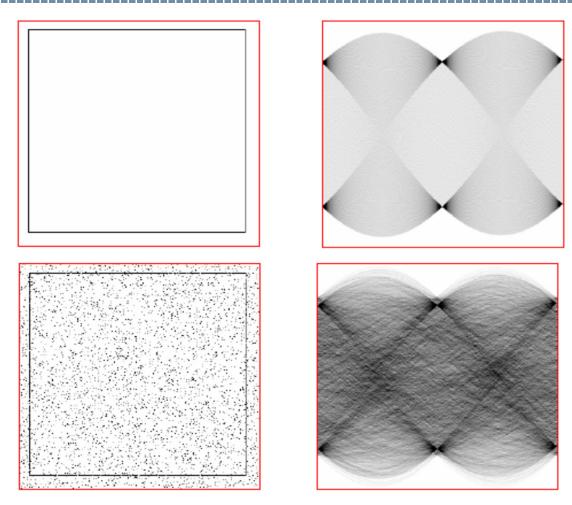
Same text with different orientations



Marco Marcon - Tomography

Hough Trasform

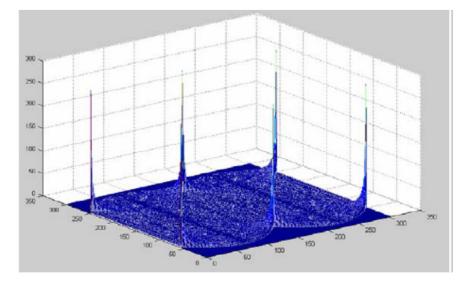
Noisy and noiseless square

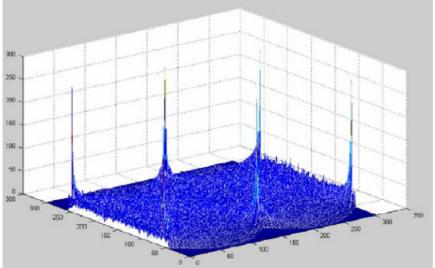


POLITECNICO MILANO 1863

Hough Trasform

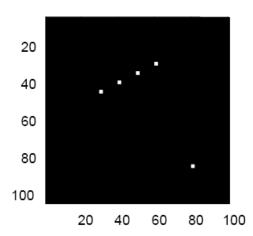
Accumulation matrices of the previous images



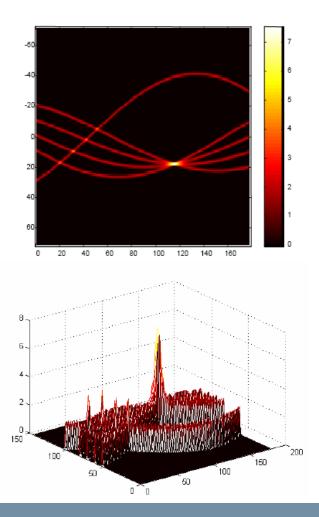


POLITECNICO MILANO 1863

Examples



Original image

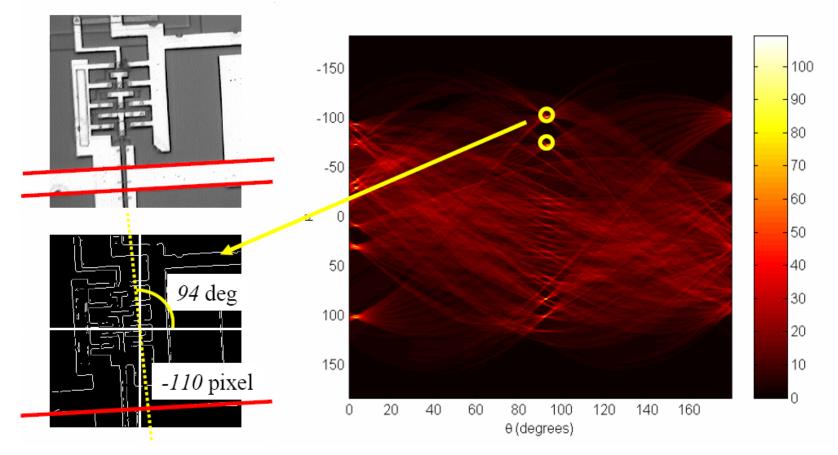


Courtesy: P. Salembier

POLITECNICO MILANO 1863

Example

Original IC image (256x256)



POLITECNICO MILANO 1863

Radon and Hough transforms

The Hough transform and the Radon transform are indeed very similar to each other and their relation can be loosely defined as the former being a discretized form of the latter.

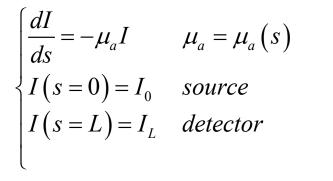
The Radon transform is a mathematical integral transform, defined on for continuous functions.

The Hough transform, on the other hand, is inherently a discrete algorithm that detects lines (extendable to other shapes) in an image by polling and binning (or voting).

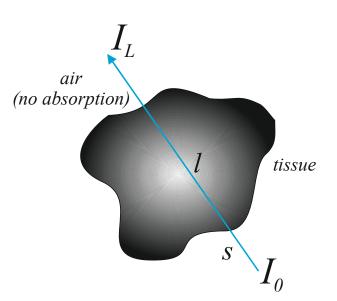
The Beer-Lambert Law

The Beer-Lambert law connects the initial (known) and final (measured) intensities of an X-ray:

$$I(s) = I_0 \exp\left(-\int_{l} \mu_a(s) ds\right) \rightarrow \int_{l} \mu_a(s) ds = -\log\left(\frac{I_L}{I_0}\right)$$

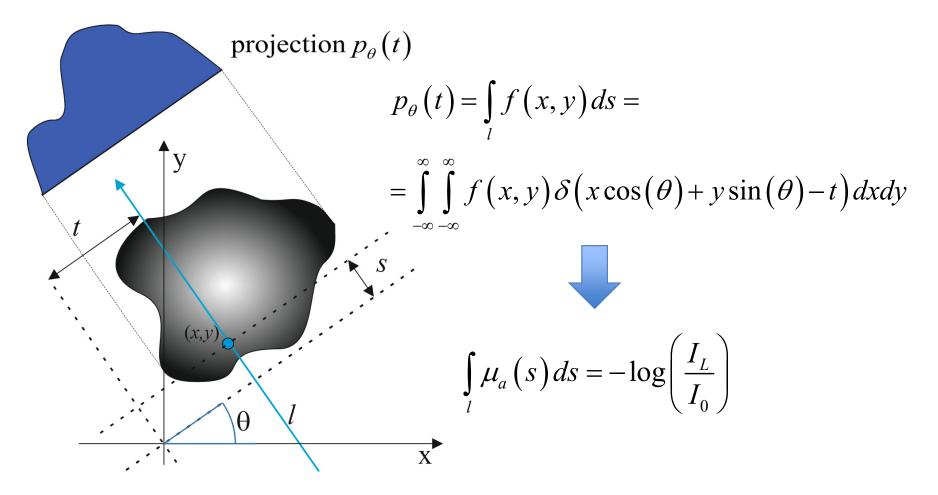


We only possess line integrals of the quantity of interest



POLITECNICO MILANO 1863

Beer-Lambert law and Radon transform



Marco Marcon - Tomography

Hounsfield units

The energy of the X-ray is attenuated from the tissue that it crosses.

The denser the tissue region, the higher the attenuation.

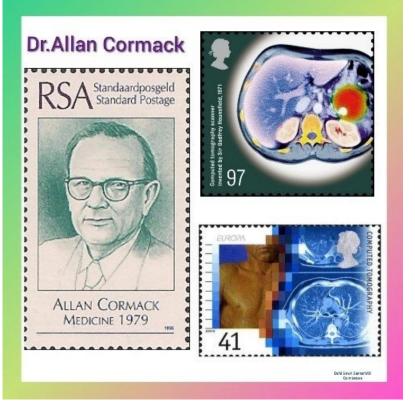
We are interested in a parameter called **absorption** (=attenuation) **coefficient** μ_a .

The result is expressed in relative Hounsfield units:

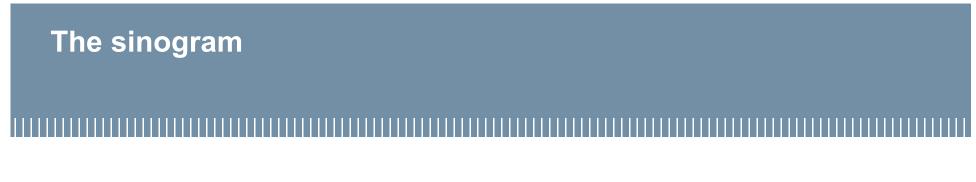
$$HU = \frac{\mu_a - \mu_{a, H_2 O}}{\mu_{a, H_2 O} - \mu_{air}} \times 1000$$

material	HU
water	0
air	-1000
bone	1086
blood	53
muscle	41

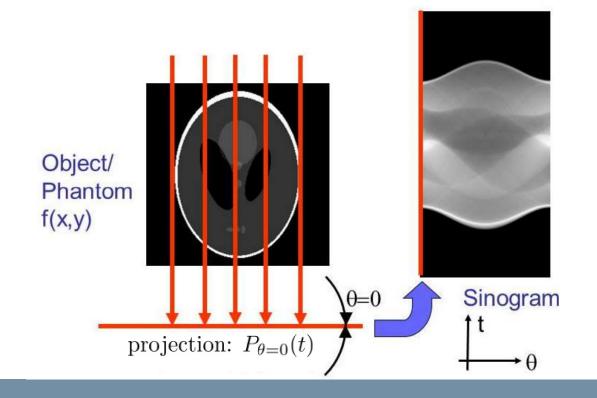
CT scan [1972 Cormack, Hounsfield - Nobel Prize 1979]



POLITECNICO MILANO 1863



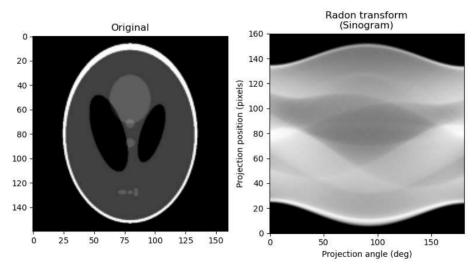
For every angle we obtain a projection, a collection of projections is called sonogram.



Marco Marcon - Tomography

'Computational' version

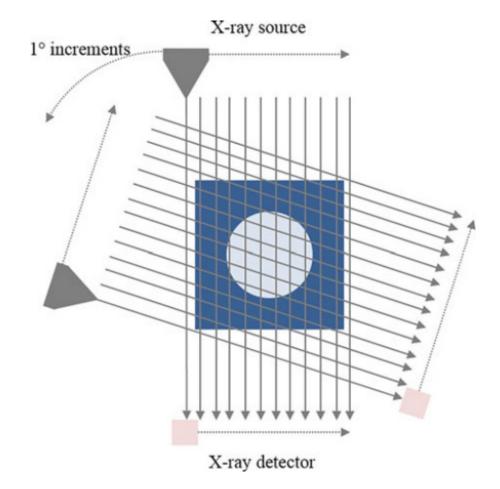
- Sinogram (measured data): already discrete (finite set of angles, finite set of detectors)
- Sample: discretize in voxels
- Various approaches to discretize (compute or approximate) the line integrals



$$\int_{\mathbb{R}^2} \underbrace{\delta(x\cos(\theta) + y\sin(\theta) - t)}_{\mathbf{K}(x,y;\theta,t)} f(x,y) \, dx \, dy = \mathbf{y}(\theta,t)$$
$$\mathbf{K}\mathbf{f} = \mathbf{y}$$

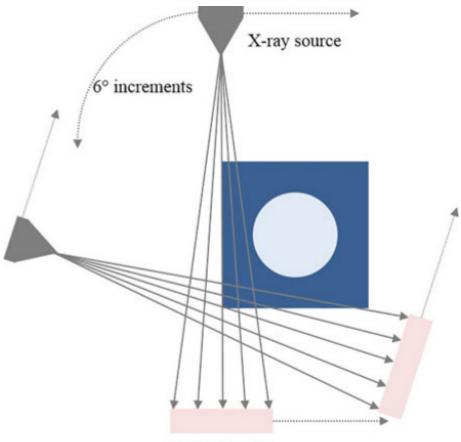
POLITECNICO MILANO 1863

Hounsfield's first generation CT scanner showing the translation-rotation system.



POLITECNICO MILANO 1863

The second generation CT scanner, showing the improved translation-rotation system.



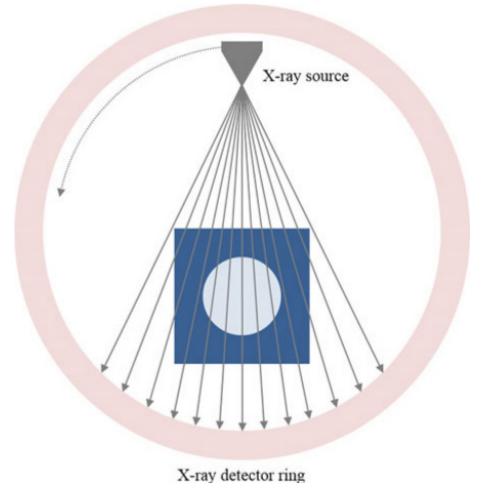
X-ray detector

POLITECNICO MILANO 1863

X-ray source The third generation of CT scanner, the first fan-beam type scanner. X-ray detector array

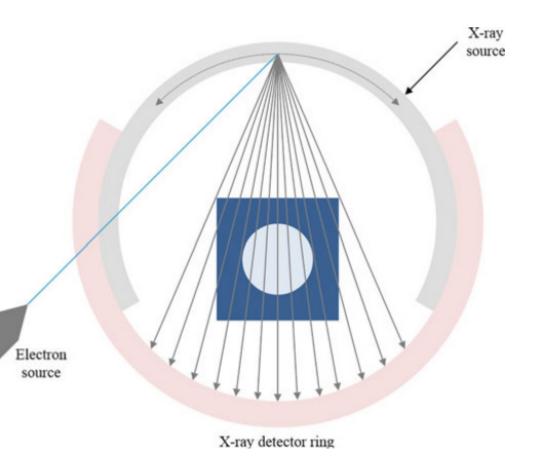
POLITECNICO MILANO 1863

A fourth generation CT scanner, showing the full ring of detector elements.



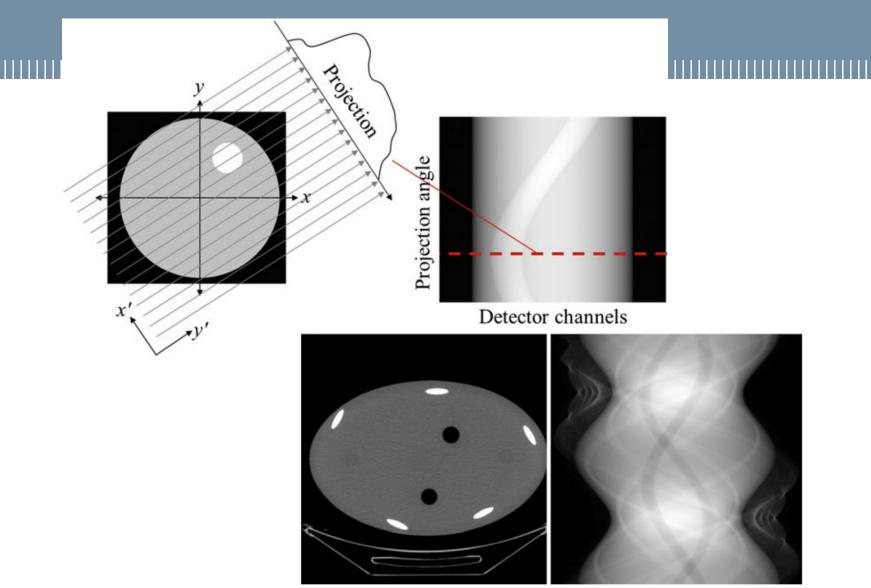
POLITECNICO MILANO 1863

The fifth generation CT scanner. The source and detector rings both sweep through angles of 210° and are arranged to be noncoplanar, so as to allow for the overlap



POLITECNICO MILANO 1863

Mapping and reconstruction



POLITECNICO MILANO 1863

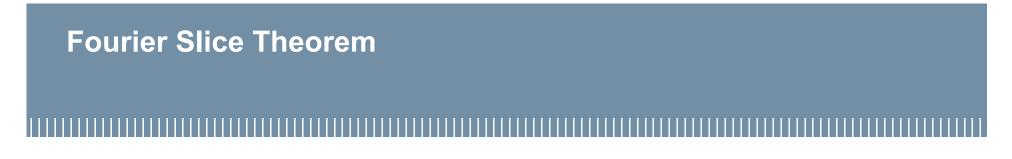
Image reconstruction

There are several techniques for performing image reconstruction, which can be classified into:

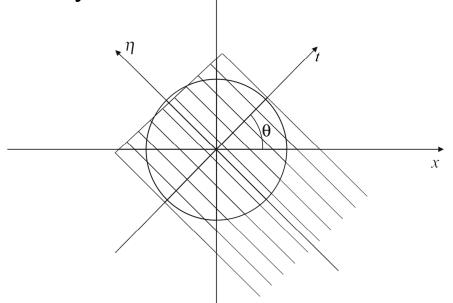
- Analytical,
- Algebraic,
- Statistical.

Analytical techniques model the object as a mathematical function, thus, reconstruct the object by solving a continuous integral equation.

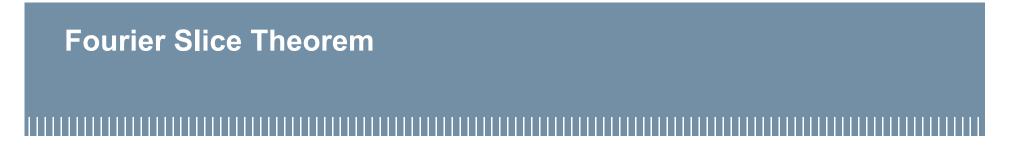
- Analytical techniques are divided into:
 - exact algorithms
 - non-exact algorithms
- depending on whether or not the solution of the integral equation is exact.
- Algebraic Reconstruction Techniques (ARTs) make use of iterative reconstruction approaches in which several iterations are performed until certain criteria are met.
- Statistical reconstruction algorithms are also iterative methods, but in this case the unknowns are assigned by means of likelihood principles.



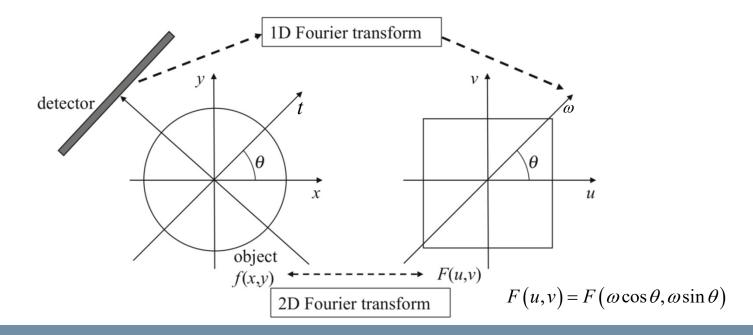
The object, which in this case for simplicity is represented as a circle in the 2D view, is described by the function f(x,y). Coordinate system used for the tomographic reconstruction in parallel-beam geometry:



POLITECNICO MILANO 1863



The object, which in this case for simplicity is represented as a circle in the 2D view, is described by the function f(x,y). Coordinate system used for the tomographic reconstruction in parallel-beam geometry:



POLITECNICO MILANO 1863

Fourier Slice Theorem

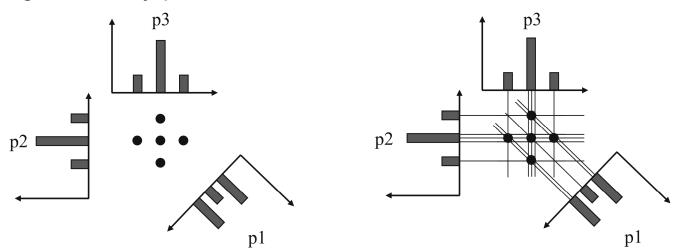
If $P_{\theta}(\omega) = \mathcal{F}\{p_{\theta}(t)\}\$ is the 1D Fourier transform in the θ direction (ω represents frequencies along that direction), then it also corresponds to the values of the 2D Fourier transform along the straight line: $u \sin \theta - v \cos \theta = 0$ and, in particular, $\omega = u \cos \theta + v \sin \theta$

- Fourier slice theorem provides a straightforward procedure for tomographic reconstruction, but, in the practical implementation, after applying the 1D Fourier transform to each projection, the Fourier space is filled on a polar coordinate grid.
- The fast Fourier transform (FFT), however, requires data on a Cartesian grid.
- For performing the 2D inverse Radon transform by means of a FFT algorithm, a regridding process is required in which projection data are rearranged from a polar to a Cartesian grid through interpolation.
- Interpolation in the frequency domain is not as straightforward as in the spatial domain, and is difficult to implement.

Filtered Backprojection

The FBP algorithm, is the most widely used reconstruction method, directly derived from the Fourier Slice Theorem.

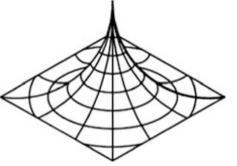
Each projection describes the distribution of the attenuation coefficient for the given X-ray path.



According to the simple backprojection principle, every profile is backprojected along the viewing direction (i.e. the θ angle) from which it was acquired.

Backprojection blurring

Due to the fact that each projection is a non-negative function, positive values are also assigned to voxels that do not contain the object. This leads to a blurred image that is not of sufficient quality.



The figure represents the result of the simple backprojection of a point object.

The superimposed profiles produce a central spike with a broad skirt that falls off as 1/r.

Implementation of the Filtered Back Propagation

FBP involves convolving each object projection with a filtering function (directly obtained from the polar coordinates), before calculating the inverse Fourier transform to recover the object. The 2D inverse Fourier Transform is:

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{j2\pi(ux+vy)} du dv$$

Since

 $u = \omega \cos \theta$, $v = \omega \sin \theta$, $\omega = \sqrt{u^2 + v^2}$, $\theta = \tan^{-1}(v/u)$

The differentials can be changed in: $dudv = \omega d\omega d\theta$

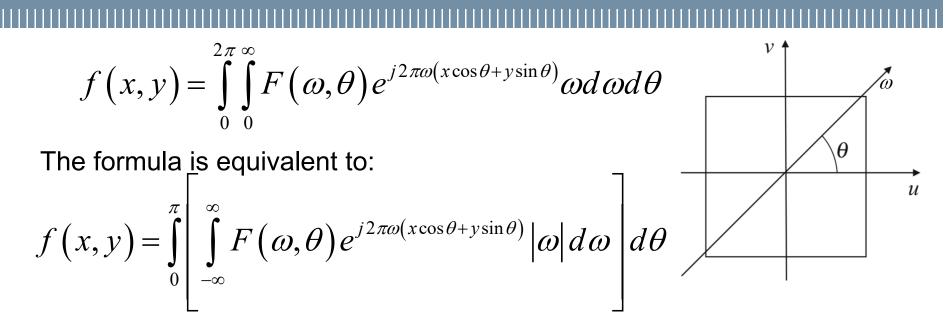
$$f(x,y) = \int_{0}^{2\pi} \int_{0}^{\infty} F(\omega,\theta) e^{j2\pi\omega(x\cos\theta + y\sin\theta)} \omega d\omega d\theta$$

Marco Marcon - Tomography

POLITECNICO MILANO 1863

u

Implementation of the Filtered Back Propagation



So, we can limit the values of $F(\omega, \theta)$ to the acquired values $P_{\theta}(\omega) = \mathcal{F}\{p_{\theta}(t)\}$

$$f(x,y) = \int_{0}^{\pi} \left[\int_{-\infty}^{\infty} P_{\theta}(\omega) |\omega| e^{j2\pi\omega(x\cos\theta + y\sin\theta)} d\omega \right] d\theta$$

Marco Marcon - Tomography

Implementation of the Filtered Back Propagation

$$f(x,y) = \int_{0}^{\pi} \left[\int_{-\infty}^{\infty} P_{\theta}(\omega) |\omega| e^{j2\pi\omega(x\cos\theta + y\sin\theta)} d\omega \right] d\theta$$

The formula is equivalent to:

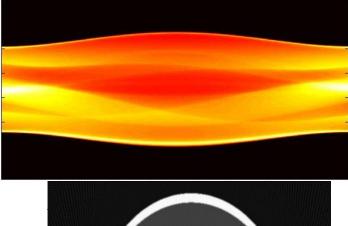
$$f(x,y) = \int_{0}^{\pi} \left[\int_{-\infty}^{\infty} \mathcal{F}\left\{ p_{\theta}(t) \right\} |\omega| e^{j2\pi\omega(x\cos\theta + y\sin\theta)} d\omega \right] d\theta$$

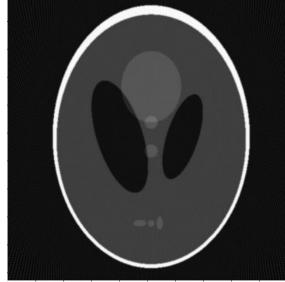
That, in a discrete formulation (finite number *I* of views θ_i) becomes:

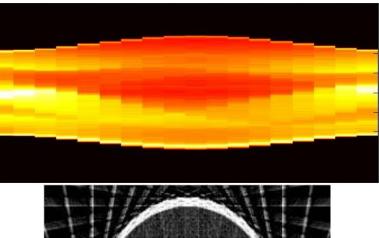
$$f(x,y) = \frac{\pi}{I} \sum_{i=1}^{I} \mathcal{F}^{-1} \left\{ \mathcal{F} \left\{ p_{\theta_i}(t) \right\} |\omega| \right\}$$

Marco Marcon - Tomography

Continuous and discrete reconstruction with FBP

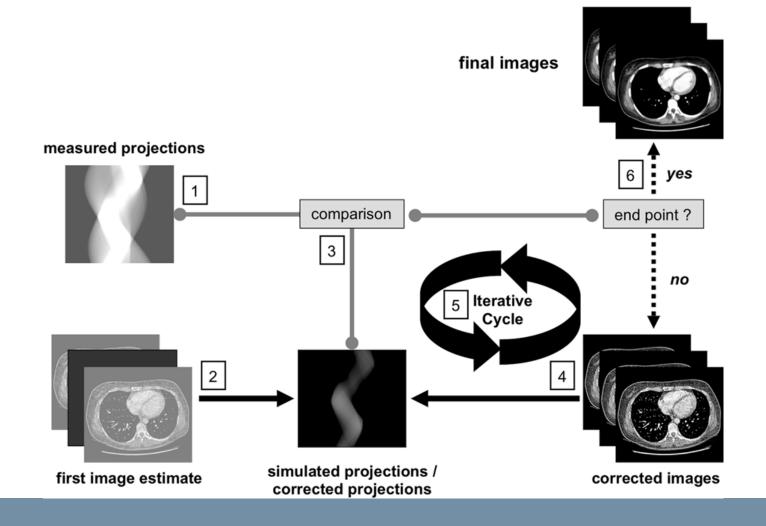






Marco Marcon - Tomography

Algebraic reconstruction technique



POLITECNICO MILANO 1863

Algebraic Reconstruction Technique

An advantage of ART over other reconstruction methods (such as filtered backprojection) is that it is relatively easy to incorporate prior knowledge into the reconstruction process.

Ax = b

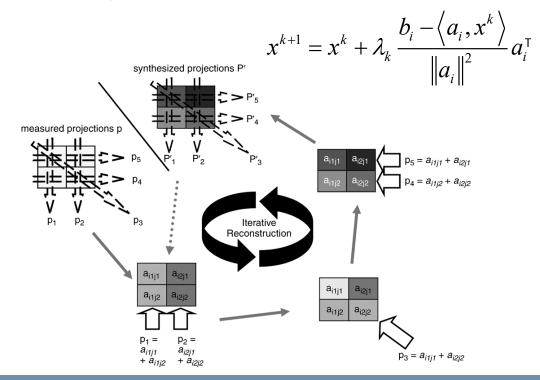
ART can be considered as an iterative solver of a system of linear equations where:

- A is a sparse m×n matrix whose values represent the relative contribution of each output pixel to different points in the sinogram (m being the number of individual values in the sinogram, and n being the number of output pixels);
- *x* represents the pixels in the generated (output) image, arranged as a vector, and:
- *b* is a vector representing the sinogram. Each projection (row) in the sinogram is made up of a number of discrete values, arranged along the transverse axis.

b is made up of all of these values, from each of the individual projections.

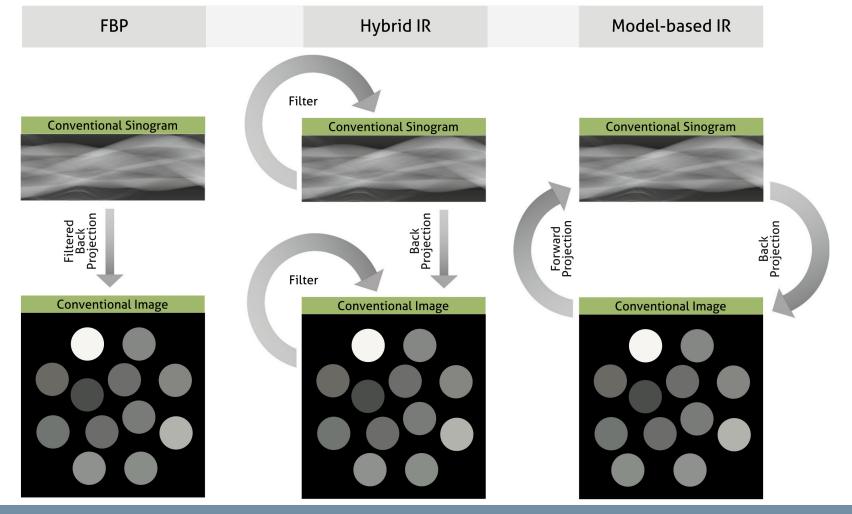
Algebraic Reconstruction Technique

Given a real or complex matrix A and a real or complex vector b, respectively, the method computes an approximation of the solution of the linear systems of equations as in the following formula



POLITECNICO MILANO 1863

Dominant reconstruction approaches



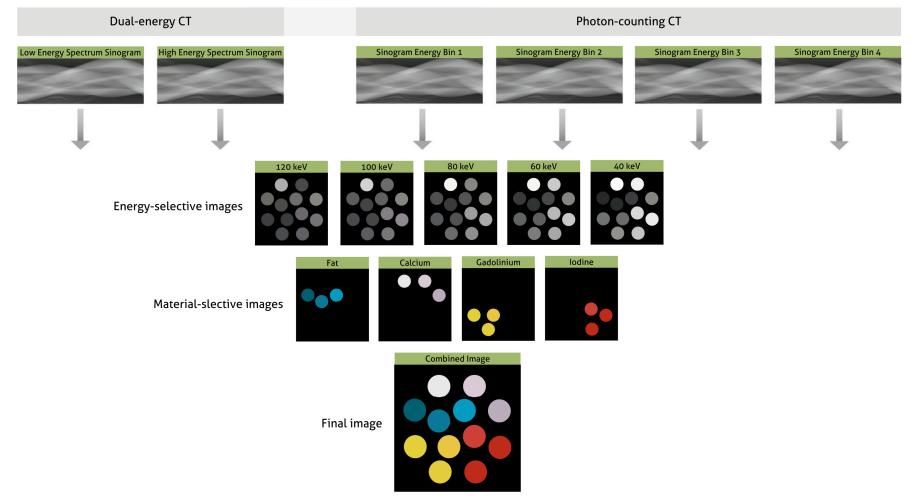
POLITECNICO MILANO 1863

Ex vivo human heart scanned at 4 mGy and 1 mGy



Marco Marcon - Tomography

Multi band tomography

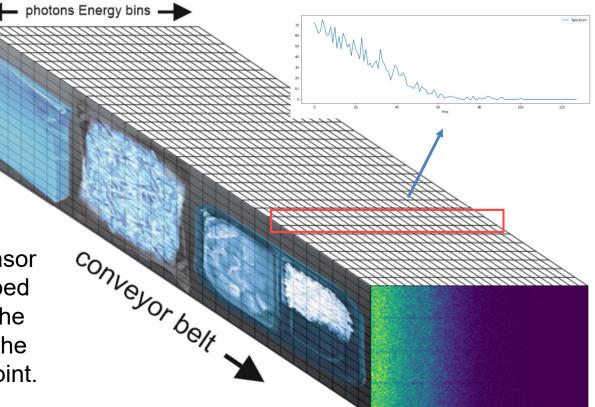


POLITECNICO MILANO 1863

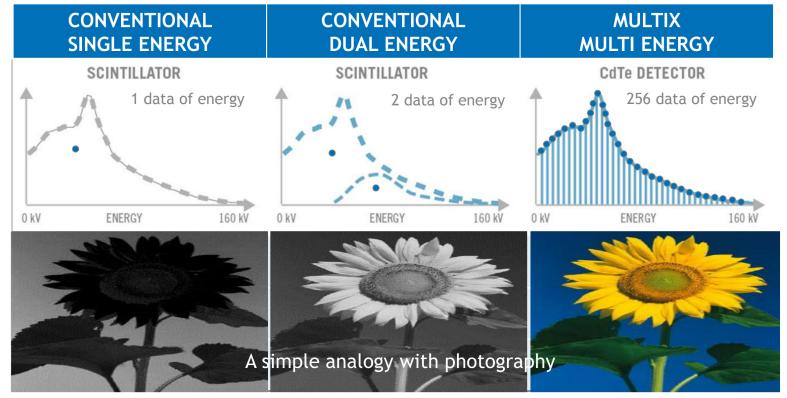
The Hyperspectral image tensor

Using the MultiX ME100 a detailed description of the analyzed foods is obtained in a wide (0-160keV) photon energy range.

The following analysis is performed on the image tensor where every pixel is described as a set of 128 '*colors*' i.e. the energy bins that represent the spectrum of the acquired point.



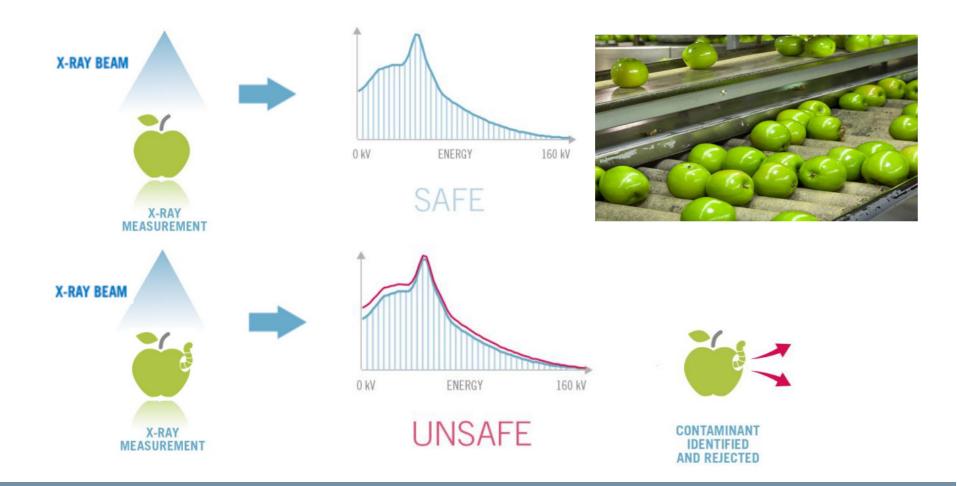
Multi energy detectors vs. conventional detectors



Multi energy demonstrates a much better capability to segregate materials with close atomic composition

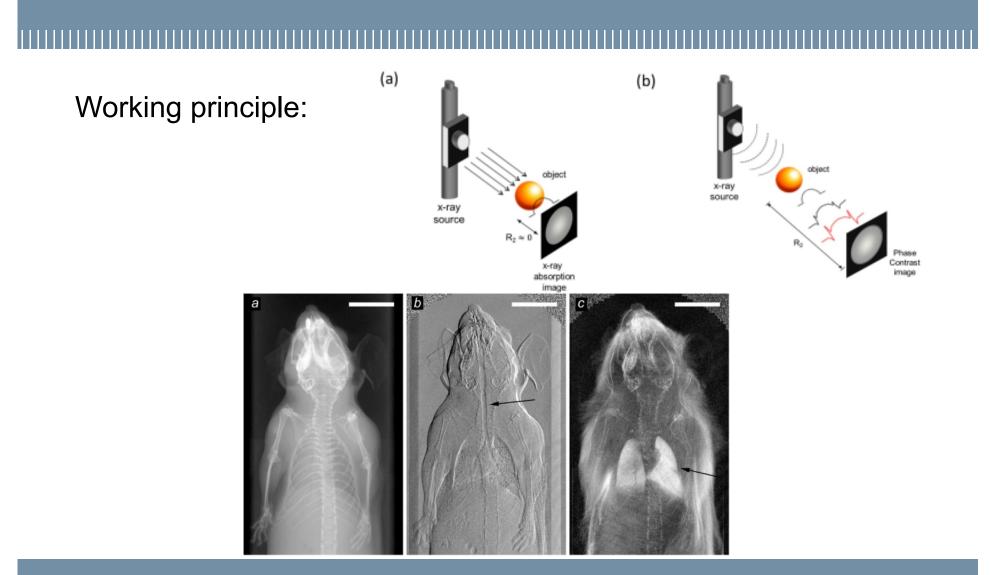
Marco Marcon - Tomography

The classification phase



Marco Marcon - Tomography

Phase-Contrast Tomography



POLITECNICO MILANO 1863

Phase-Contrast Tomography

Phase-contrast X-ray imaging is a general term for that use information concerning changes in the phase of an X-ray beam that passes through an object in order to create its images.

Standard X-ray imaging techniques rely on a decrease of the Xray beam's intensity (attenuation) when traversing the sample, it can can be measured directly with the assistance of an X-ray detector.

In phase contrast X-ray imaging, the beam's phase shift caused by the sample is not measured directly, but is transformed into variations in intensity, which then can be recorded by the detector.

Phase contrast imaging can be combined with tomographic techniques to obtain the 3D distribution of the real part of the refractive index of the sample.

For X-rays the complex refractive index of a medium is typically written as: $n = \frac{1}{\log \delta} + \frac{i\beta}{i}$ with $\delta << 1$

A planar wave in vacuum can be written as:

$$\Psi_v(\vec{r},t) = \Psi_0 \,\mathrm{e}^{i(\vec{k}\vec{r}-\omega t)} = \Psi_0 \,\mathrm{e}^{i(kz-\omega t)}$$

where:

$$\vec{k} = (0, 0, k = \frac{2\pi}{\lambda})$$

While, in a medium:

$$\Psi_m(z,t) = \Psi_0 e^{i(nkz - \omega t)} = \Psi_0 e^{-i\omega t} e^{(1-\delta)ikz} e^{-\beta kz} = \Psi_v(z,t) \cdot \underbrace{e^{-i\delta kz}}_{\text{[phase-shift]}} \cdot \underbrace{e^{-\beta kz}}_{\text{[attenuation]}}$$

POLITECNICO MILANO 1863

Phase propagation

- (a) When a wave-front travels through a medium with complex refractive index *n*, it experiences a decrease in wave-amplitude by ΔA as indicated by blue arrows, which is associated with the imaginary part of the refractive index. The perturbed wave receives a shift in the wave-phase by $\Delta \Phi$ as indicated by red arrows, which is associated with the decrement of refractive index.
- (b) When a wave-front travels through a phase prism ($\beta = 0$), a local variation in wave-shift implies a refraction of the wave by an angle αx , with respect to the incident wave-front. Note that peaks of the excited waves are aligned on a line (dashed line), which is titled by the angle αx with respect to the horizontal.

$$(a) \qquad (b) \qquad (b) \qquad (c) \qquad (c)$$

Attenuation of X-rays

The ratio of beam intensities before and after the medium is:

$$T(d) = \frac{I_m(d)}{I_v(0)} = \frac{|\Psi_m(d, t)|^2}{|\Psi_v(0, t)|^2} = e^{-2k\beta d}$$

Comparing with Lambert-Beer:

$$T(d) = \frac{I_m(d)}{I_v(0)} = e^{-\mu d}$$

Results in: $\mu = 2k\beta$ The variations induced To by the medium are:

$$T(x, y) = e^{-2k \int \beta(x, y, z) dz},$$

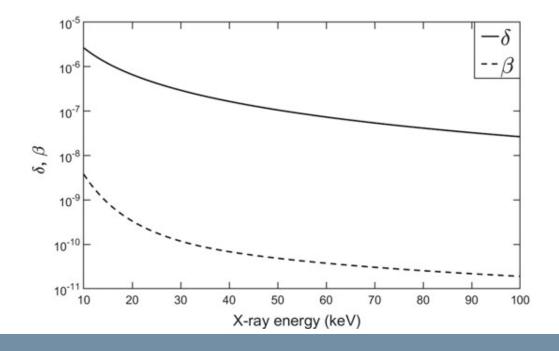
$$\Delta \Phi(x, y) = k \int \delta(x, y, z) \, dz,$$

$$\alpha_x(x, y) = \frac{1}{k} \frac{\partial \Phi(x, y)}{\partial x} = \frac{\partial}{\partial x} \int \delta(x, y, z) \, dz.$$

Marco Marcon - Tomography

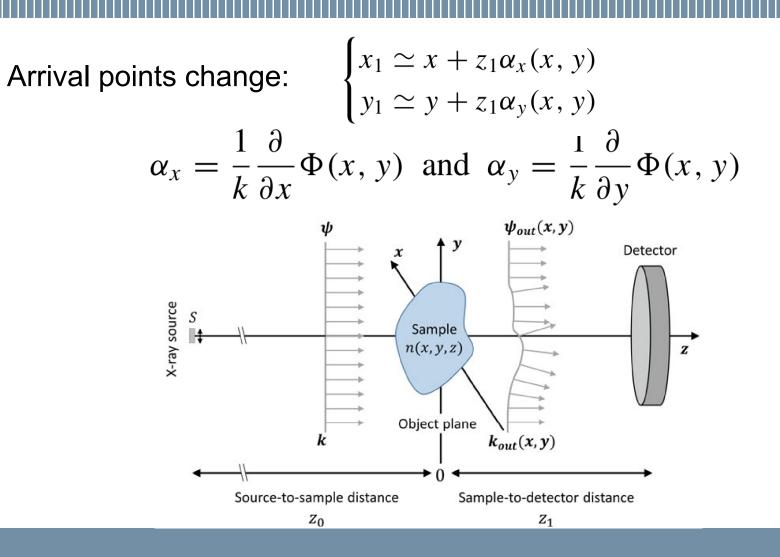
Why phase contrast?

δ is approximately 3 orders of magnitude larger than β, their typical values being $10^{-6} - 10^{-7}$ and $10^{-9} - 10^{-10}$, respectively. This huge difference is the reason why phase-sensitive techniques can be advantageous over attenuation-based imaging.



Marco Marcon - Tomography

Phase contrast effect



Marco Marcon - Tomography

Intensity variation due to phase changes

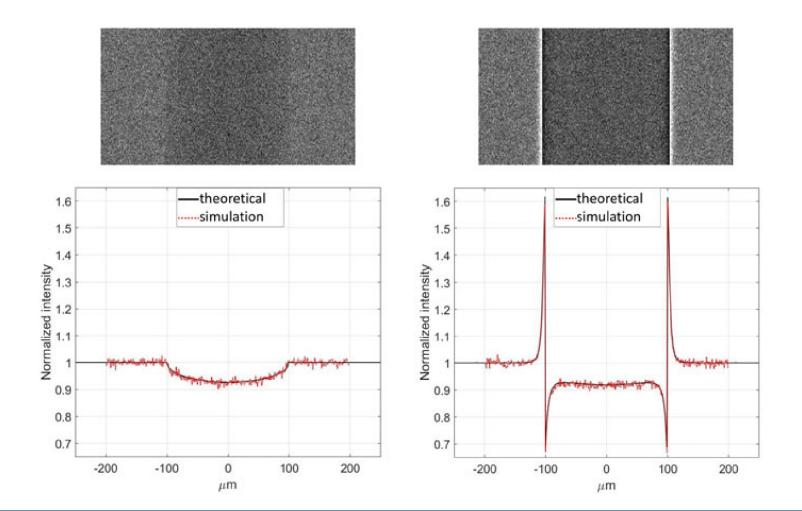
$$I(x_1, y_1) = I(x, y) \left| \frac{\partial(x_1, y_1)}{\partial(x, y)} \right|^{-1}$$
$$= I(x, y) \left| \begin{array}{c} 1 + z_1 \frac{\partial \alpha_x}{\partial x} & z_1 \frac{\partial \alpha_x}{\partial y} \\ z_1 \frac{\partial \alpha_y}{\partial x} & 1 + z_1 \frac{\partial \alpha_y}{\partial y} \end{array} \right|^{-1}$$
$$\simeq I(x, y) \left(1 + \frac{z_1}{k} \nabla^2 \Phi(x, y) \right)^{-1}$$

With a first-order Taylor expansion:

$$I(x_1, y_1) \simeq I(x, y) \left(1 - \frac{z_1}{k} \nabla^2 \Phi(x, y)\right)$$
$$= I_0 e^{-2k \int \beta(x, y, z) \, \mathrm{d}z} \left(1 - \frac{z_1}{k} \nabla^2 \Phi(x, y)\right)$$

POLITECNICO MILANO 1863

Phase Contrast results



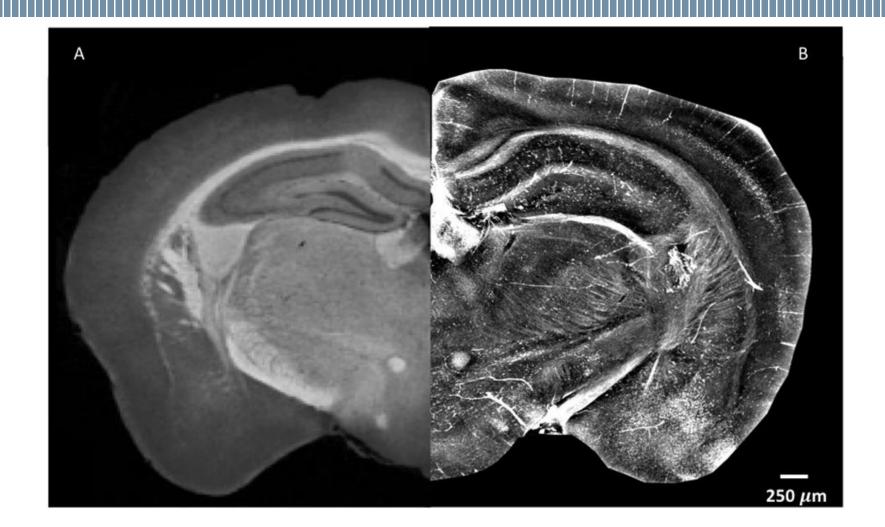
Marco Marcon - Tomography

Intensity vs Phase contrast Tomography

POLITECNICO MILANO 1863

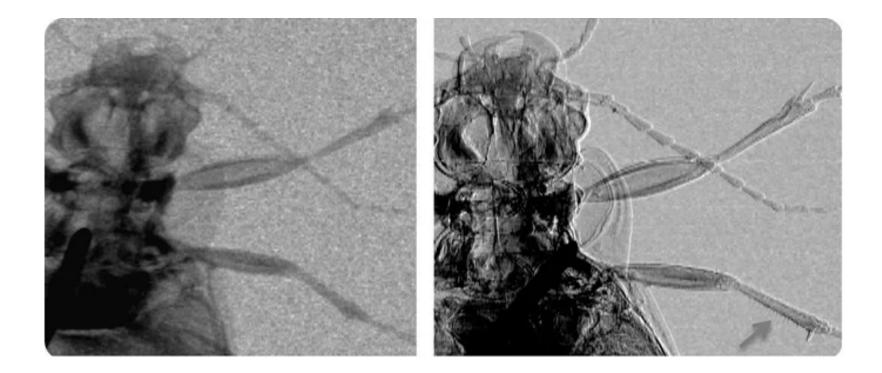
5mm

Intensity vs Phase contrast Tomography

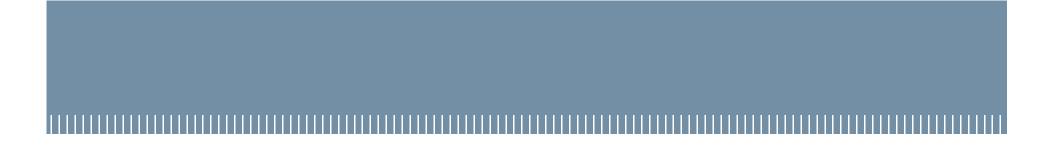


POLITECNICO MILANO 1863

Intensity vs Phase contrast Tomography



Marco Marcon - Tomography



THE END

Marco Marcon - Tomography