Video signals

IMAGE SPATIAL PROCESSING



Filtering examples

Original Cameraman blurred vertically
Cameraman Filter impulse response
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Filtering examples

Original Cameraman blurred by convolution
Cameraman Filter impulse response
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Fourier interpretation
H (e'. e )= i i T
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Filtering Examples

Cameraman blurred horizontally

Original
Cameraman Filter impulse response

%(1 1 [1] 1 1)

Video Signals Marco Marcon



Fourier interpretation

lal

Cameraman blurred horizontally
Filter impulse response

%(1 1 1] 1 1)
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Filtering examples

Cameraman sharpened
Cameraman Filter impulse response

Original

(0 -1 0)
it—l [8] —1J
0 -1 0
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Fourier interpretation
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Filtering examples

Original Cameraman sharpened
Cameraman Filter impulse response
(0 -1 0)

S
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Fourier interpretation

Cameraman sharpened
Filter impulse response

0 -1 0
-1 [5] -1
0 -1 0
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Linear and non linear operations

Median Filter: (6, 8,9, 9,10, 11, 12, 13, 15) =10
Minimum = 6; Maximum: 15

Average of nearest neighbours:

(104 13494+ 124849+ 1541 L+6)/9 = 1035 — 10
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Low pass gaussian filter

1 2 1 1
Il 4 2|=La 2 )iz [H(u)
16 4 4

1 2 1 1
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Median filtering
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Hi pass filtering for high frequencies
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Example
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1D derivatives

Marco Marcon

®
=
.................................... \m.a, Sy
u..-\
&
— —
) £
>
}
oy -
X =
& fm

llllllllllllllllllllllllllllllllllllll

Video Signals




Gradient methods

1D example
g >Thres- | YeS | Edge | YeS
o (| === | hold? | Thinning
edge
l No l No
No edge No edge
1 z
f(x, y) /
% — X

* FERT threshold

f’(-xv }’) / K
: - -
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2D case
»The first derivative is substituted by the gradient

Vf(x,y)z iAx+

»Omnidirectional detector
> Based on| V{(x,y)|: isotropic behaviour

» Directional detector

> Based on an oriented derivative:
o ex.: a possible horizontal edge detector is |0f/0y|
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2D approach

f{x.v) \V , || | >Thres- Yes , Edge edge

hold? thinning

/ |
/ l No edge No edge
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Edge thinning

1) if| V| has a local horizontal max but not a vertical one in
(Xo,¥0), then, that point is an edge point 1f

a1 Skl
OXx oy

(Xo,J/O )

K =2(typical value)

(x09y0)

2) 1f | V| has a local vertical max but not a horizontal one in
(Xo,¥0), then, that point 1s an edge point if

a1 Skl
oy OXx

(%, Y0) (X0, )

K =2(typical value)
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Directional case

FIII RCRLE
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Example: isotropic case

FIIII RCRE
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Discretization

The gradient operator can be discretized as:

_(orenY (of )Y
N e

va(nlanz)H = \/fx(n19n2)2 +fy(nl’n2)2

Which is based on a discretization of directional
derivatives:

va(nl ) nz)H =
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Finite Impulse Response Model

Discrete operators for derivative estimation can be estimated as
FIR filters.

f,(n,ny) = f(n,ny)*h,(n,n,)
f.(n,ny) = f(n,n,)*h (n,n,)

f(n,n,) ‘-ﬂnlﬂnZ)
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Discrete differential operators

" Pixel difference: luminance difference between to
neighbour pixels along orthogonal directions.

1. k)= 10,0 = f(,k=1)
1, (k)= 1. k) = f(j+1,k)

Separable filters

o O O

0
1
0

0
—1
0

h o=

o O O

—1

1
0

o O O
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Example: pixel difference

FIIII RCFL
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Separated pixel difference

e |f farther pixels are chosen there is a higher noise
rejection, and there is no phase translation in edge
definition.

LUk = fk+1) = f(j,k=1)
1,k)=f(J-Lk)=f(j+1,k)

00 0 0 —1 0
ho=/1 0 -1|h,=[0 0 0
00 0/ [0 1 0
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erence

[ aF o

separated pixel di
™~ ~

EX.:

FIIII RCFL

wEaw

L
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Roberts edge extraction

1.Usk) =1k = f(j+1k+1)
1, k) =1,k +D) = f(j+1Lk)

—1 —1

Ny
Il
o O O
S = O
S = O
o O O

0 =10
0 0
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Ex.: Roberts method

FIIII RCFL
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Prewitt method

Estimation can be improved involving more samples for te
gradient operator 3x3

K*£ﬁ] = [f(nl +1,n, +1)_f(nl —L,n, +1)]+
ox

+[f(n1 +13n2)_f(n1 _lanz)]+[f(n1 +1,n, _1)_f(”1 -1,n, _1)]
= vertical low pass™ horizontal high pass

K*[ﬁ] = [f(n1 +1,n, +1)—f(n1 +1,m, _1)]+
oy

+[f(n1,n2 +1)_f(”19”2 _1)]+[f(n1 —1,n, +1)—f(n1 —1,n, _1)]

= vertical high pass* horizontal low pass
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Gradient estimation

* Gradient modulus = the value of the higher directional derivative
 Gradient phase = orientation of the higher directional derivative

Squared lattice =eight possible directions

-1 0 1] 0 1 1
hn,n,)=|-1 0 1 hn,n,)=|-1 0 1
-1 0 1 -1 -1 0

— E )  NE )

1 1 1] 1 1 0
hn,n,)=| 0 0 0 hn,n,)=|1 0 -1
-1 -1 -1 0 -1 -1

PN ) N ONW
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Gradient estimation

h(nl,n2)=

h(nl,nz)z

h(nv nz)

h(nl,nz)

0
1

/ SW

. SE
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EX.: Prewitt method 3x3
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Sobel method

Same dimensions of Prewitt filter

Different weight for central point in different

directions.
10 -1 -1 -2 -1
h=2 0 -2 ho=0 0 0
1 0 -1 b2

Sobel for exagonal grids.

-1 1
h=|-2 0 2
-1 1
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Comparison

Roberts

Sobel | | Prewitt ¢
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Frei-Chen operator

Isotropic operator similar to Prewitt

different weight for the central point in the 4
directions.

The gradient has the same value for horizontal,
vertical and diagonal edges.

1 0 -1 1 =2 -1
ho=|N2 0 2| n=/0 0 0
10 -1 1 N2 1
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EX.: Frei-Chen method

FIIII RCFL
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Extended operators

A limit for the aforementioned methods is their weakness in
accurate edge detection when SNR is very low.

A possible solution in to extend their size: the result will be
a less accurate edge positioning but noise rejection will be

higher.
PREWITT METHOD 7X7 ] ]
1110 -1 -1 -1
Extension of Prewitt 3X3 1 110 -1 -1 -1
1110 -1 -1 -1
> Normalized impulse response: h=l1110 -1 -1 -1
1110 -1 -1 -1
1110 -1 -1 -1
1110 -1 -1 -1
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Ex.: Prewitt 7x7 method

- AN !
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Abdou 7X7 Method

Is a filter mask that gives a linear decreasing sample weight
as they are farther from the edge. Its behaviour is close to a
truncated pyramid.

The normalized impulse response is:

Ryl

|
e e e e e T e
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Ex.: Abdou 7x7 Method
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Further extended operators

It is possible to obtain extended gradient filters for low SNR
conditions convolving a 3x3 operator with a low-pass filter.

h(j, k) =hg(j, k)™ hpg(J, k)

H; (j,k) is one of the previously considered filters, Hy; (j,k) is the
impulse response for a low-pass filter.
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Example

1.].
Prewitt 3X3 convoled with: /A = 5 *1]

...and we get the Smoothed Prewitt 5X5

1 10 -1 -1
2 2 0 -2 -2
h=|3 3 0 -3 =3
2 2 0 -2 -2
110 -1 -1
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Laplacian based methods

1D Case

> Find zero-crossing of the second derivative, corresponding to
inflection points.

f(x, }*) /
— x
‘ £\ threshold
- a

N

f'(x,y)

(2,
e %\/ i,
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Laplacian

> For the 2D case the 2" order differential operator is the Laplacian

0" f(x, ) @2f (x, )
Ox” oy’

Vif(x,»)=V-(Vf(x,y)) =

Isotropic operator

More sensible to noise with respect to gradient
False edges can be generated due to noise.

Thinner edges are produced.
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Algorithm: case 2D

. Gradient estimation 6(36,)/)
. Vif(x,y) |
V2H H =072 Yes O(x,y) > Yes
S ) ' threshold ed ge
l No lNo

Video Signals Marco Marcon



FUIII RCRLE

/ero-crossing
without threshold

Sobel vs. Laplacian

Video Signals Marco Marcon



Laplacian Discretization

V@) =fE+L )+ fG-L)+fGi+D+ G -D-4/G,.))

Can be seen as the convolution of f(n,,n,) with the impulse
response A(n,,n,) of a linear system.

sz(”pnz) = f(n,,n,)* h(n,n,)
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4 neighbours method

Separable normalized filter
> Unit gain for continuous component

° The sign of h(ny,n,) can be changed without changes in the final
result (since we are looking for zeros of laplacian)

1‘0 0 0 1'0 -1 0]
h(nl,nz)zz -1 2 -1 +ZO 2 0
0 0 O 0 -1 0
0 -1 0
]
-1 4 -1
4
0 -1 0|
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Ex.: 4 neighbours method

Marco Marcon
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Laplacian Discretization

The laplacian can be approximated with finite differences

LED s £ ()= G+ 100
LD o 1,6 b= 1,60 £.G-15) =

=fU+LE) =210, k) + f(j-1k)
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Discretization examples

Prewitt method 1 1 o1
Not separable filter h(n n):l 18
RLLS ]l 1

8 Neighbours method -

Similar to Prewitt but with a separable formulation

(2 -] 2
hnpm)=| =1 2 =1+ 2 2 2 |=f 1 4 |
-1 2 —1] -1 -1 -1 |2 1 -2
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Ex.: 8 neighbors method

Marco Marcon
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Ex.: Prewitt not separable

Marco Marcon
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Noise presence

> When noise is significant these filters could not be accurate for diagonal
edges. The Prewitt filter can work even in regions with high density of

edges. i i
| -1 2 -1

h(nl,n2)=§ 2 -4 2
-1 2 -1

> Since ege are directional and noise can generate luminance variations,
zero-crossing for laplacian could find non-correct edges.
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Ex.: Laplacian for diagonal edges

FIIII RCFL
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Super-resolution (Laplacian)
First method.

Given two neighbour pixels, mark as possible edge point the
intrapixels points if the laplacian values in the two pixels have
different signs.

Assume as effective edge the point, among them, with the
largest gradient.

Apply this analysis to all the pixels couples.

» »
> Ll

I, I, I, + + 4
I, I, I - - +
L, 1 g -+ 4]
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superresolution

Second method: analytical approach

Approximate the continuous form of function f(n;,n,) with a 2D polynomial in order to
describe the laplacian in an analytical way.

Polynomial example:
F(r.o)=K, +K,r+K.c+ K, +Krc+ K.’ +K r’c+Kpe® + K,r’c’

where K. are the weights obtained from the discrete image.
r and c then become continuous variables associated to a discrete image matrix.
Polynomial formulation can be found with small efforts.

—(W—1)<,,C<(W—1)
2 T2
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Comparing Edge Operators

. of oOf Good Localization
Gradient: p—
radien Vf {8337 8y] Noise Sensitive

Poor Detection

Roberts (2 x 2): 0 (1 110
110 0 |1
Prewitt (3 x 3):
-110 |1 11111
-110 |1 0(0|0
-110 |1 -11-11 1
Prewitt (5 x 5):
A(-210 |2 |1 1 12 |3 |2 |1
2(-3/0 |3 |2 2 |3 |5 (|3 |2
3|-5|0 |53 0 10 (010 10| poorLocalization
2(-3|0 |3 |2 21-3|-5[-3|-2]| Less Noise Sensitive
4|20 (2 |1 4|(2|-3|-2|-1] GoodDetection
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Effects of Noise

Consider a single row or column of the image
> Plotting intensity as a function of position gives a signal

f(x)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

4 f(z)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge??
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Solution: Smooth First

Sigma = 50

Kernel

600 800 1000 1200 1400 1600 1800 2000
- ! ! ! ! ! ! ! ! !
2 : ;
=
=
hxf ¢
S8
E ! ! ! ! ! ! ! ! !
3 ? ? ? ? ? ?
= : : : : : :
O g a a 5 a a a
2 (hxf) & T R N N ;
aw Dﬂ_ """" i I ] I | ] I I [ ]
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge?
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Derivative Theorem of Convolution

...Saves us one operation.

D (hxf)=(Zh)*f

] ] ] ] 1
1000 1200 1400 1600 1800 2000

0 200 400 600 800
8 h rm :
L o ] I S e lal _
O g |
| | ; | | | | | |
0 200 400 600 200 1000 1200 1400 1600 1800 2000
c ; : ;
) £l ' %
(Zhy«f 3|
ox g a a
[=] ; :
S 5 5
Op-—--- | | | | | | T i
0 200 400 600 800 1000 1200 1400 16800 1800 2000
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Laplacian of Gaussian (LoG)

Laplacian of Gaussian

O (h f)= [a—zh}f

Sigma = 50

| | I |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

~ Laplacian of Gaussian operator

2
02
0 2[ill3 4[20 E[ilD E-[i![.'l 1 DiU[J 1 EiD[J 1 4i0[l 1 EiiDU 1 Biﬂﬂ 2000
CEDEVEE (. |
0 ZICI}IO 4[I:ID E[I}ID E.[I:ID 1000 1200 1400 1600 1800 2000
Where is the edge? Zero-crossings of bottom graph !

Marco Marcon
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2D Gaussian Edge Operators

[
il
2
AR it
itk i VS o
G T
RN SN KOS s
St LS dias e te ettt

1 _u2+52
]’LO-(U, ’U) = me 20
Gaussian Derivative of Gaussian (DoG) Laplacian of Gaussian

Mexican Hat (Sombrero)

. Vz is the Laplacian operator:

92 52
V2f — 8:c£ | 8y£
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